Cargando…
Recovering Spatially-Varying Cell-Specific Gene Co-expression Networks for Single-Cell Spatial Expression Data
Recent advances in single-cell technologies enable spatial expression profiling at the cell level, making it possible to elucidate spatial changes of cell-specific genomic features. The gene co-expression network is an important feature that encodes the gene-gene marginal dependence structure and al...
Autores principales: | Yu, Jinge, Luo, Xiangyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8107398/ https://www.ncbi.nlm.nih.gov/pubmed/33981332 http://dx.doi.org/10.3389/fgene.2021.656637 |
Ejemplares similares
-
Identification of cell-type-specific spatially variable genes accounting for excess zeros
por: Yu, Jinge, et al.
Publicado: (2022) -
SpatialMap: Spatial Mapping of Unmeasured Gene Expression Profiles in Spatial Transcriptomic Data Using Generalized Linear Spatial Models
por: Gao, Dalong, et al.
Publicado: (2022) -
Hybrid Clustering of Single-Cell Gene Expression and Spatial Information via Integrated NMF and K-Means
por: Oh, Sooyoun, et al.
Publicado: (2021) -
Machine Learning Approaches Identify Genes Containing Spatial Information From Single-Cell Transcriptomics Data
por: Loher, Phillipe, et al.
Publicado: (2021) -
Identification of spatial expression trends in single-cell gene expression data
por: Edsgärd, Daniel, et al.
Publicado: (2018)