Cargando…

Dark, loud, and compact sounds induce frisson

Frisson is characterised by tingling and tickling sensations with positive or negative feelings. However, it is still unknown what factors affect the intensity of frisson. We conducted experiments on the stimulus characteristics and individual’s mood states and personality traits. Participants fille...

Descripción completa

Detalles Bibliográficos
Autores principales: Koumura, Takuya, Nakatani, Masashi, Liao, Hsin-I, Kondo, Hirohito M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8107501/
https://www.ncbi.nlm.nih.gov/pubmed/33176602
http://dx.doi.org/10.1177/1747021820977174
Descripción
Sumario:Frisson is characterised by tingling and tickling sensations with positive or negative feelings. However, it is still unknown what factors affect the intensity of frisson. We conducted experiments on the stimulus characteristics and individual’s mood states and personality traits. Participants filled out self-reported questionnaires, including the Profile of Mood States, Beck Depression Inventory, and Big Five Inventory. They continuously indicated the subjective intensity of frisson throughout a 17-min experiment while listening to binaural brushing and tapping sounds through headphones. In the interviews after the experiments, participants reported that tingling and tickling sensations mainly originated on their ears, neck, shoulders, and back. Cross-correlation results showed that the intensity of frisson was closely linked to the acoustic features of auditory stimuli, including their amplitude, spectral centroid, and spectral bandwidth. This suggests that proximal sounds with dark and compact timbre trigger frisson. The peak of correlation between frisson and the acoustic feature was observed 2 s after the acoustic feature changed, suggesting that bottom-up auditory inputs modulate skin-related modalities. We also found that participants with anxiety were sensitive to frisson. Our results provide important clues to understanding the mechanisms of auditory–somatosensory interactions.