Cargando…
Addressing Fairness, Bias, and Appropriate Use of Artificial Intelligence and Machine Learning in Global Health
In Low- and Middle- Income Countries (LMICs), machine learning (ML) and artificial intelligence (AI) offer attractive solutions to address the shortage of health care resources and improve the capacity of the local health care infrastructure. However, AI and ML should also be used cautiously, due to...
Autores principales: | Fletcher, Richard Ribón, Nakeshimana, Audace, Olubeko, Olusubomi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8107824/ https://www.ncbi.nlm.nih.gov/pubmed/33981989 http://dx.doi.org/10.3389/frai.2020.561802 |
Ejemplares similares
-
A United States Fair Lending Perspective on Machine Learning
por: Hall, Patrick, et al.
Publicado: (2021) -
Editorial: Artificial Intelligence and Machine Learning Applications in Plant Genomics and Genetics
por: van Dijk, Aalt D. J., et al.
Publicado: (2022) -
Integrated Evolutionary Learning: An Artificial Intelligence Approach to Joint Learning of Features and Hyperparameters for Optimized, Explainable Machine Learning
por: de Lacy, Nina, et al.
Publicado: (2022) -
Artificial intelligence in clinical medicine: catalyzing a sustainable global healthcare paradigm
por: Krishnan, Gokul, et al.
Publicado: (2023) -
On Consequentialism and Fairness
por: Card, Dallas, et al.
Publicado: (2020)