Cargando…

Investigation of the association between imbalance of the intestinal flora and infantile spasms: a pilot case-control study

BACKGROUND: The intestinal flora (IF) regulates brain function via the neuroendocrine and neuroimmune systems and influences the development of several neuropsychiatric diseases, including epilepsy. Here, we investigated the specific relationship between the IF and infantile spasms (IS), a specific...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Lin, Yang, Guang, Zhang, Shan, Sun, Yulin, Li, Zhichao, Wang, Jing, Shi, Xiuyu, Zou, Liping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8107841/
https://www.ncbi.nlm.nih.gov/pubmed/34012831
http://dx.doi.org/10.21037/tp-20-384
Descripción
Sumario:BACKGROUND: The intestinal flora (IF) regulates brain function via the neuroendocrine and neuroimmune systems and influences the development of several neuropsychiatric diseases, including epilepsy. Here, we investigated the specific relationship between the IF and infantile spasms (IS), a specific form of epilepsy. METHODS: Twenty-three children suffering from IS were recruited from the Chinese PLA General Hospital. According to patient response to adrenocorticotropic hormone (ACTH) treatment, the cohort was subdivided into 2 groups: an ACTH-response group and an ACTH-no response (NR) group. A total of 21 healthy children were recruited as a control group (healthy controls: HCs) during the same time period. Fecal samples were collected from infants in the IS and HC groups, and the population of fecal microorganisms was analyzed by 16s ribosomal DNA sequencing. The α and β diversity of the fecal microflora was determined, and the relative abundance of each species was classified. Tax4Fun2 was used to analyze the metabolic pathways utilized by the microflora, and the Kyoto Encyclopedia of Genes and Genomes database was used to analyze differentially expressed genes and pathways. RESULTS: No significant differences existed in α or β diversity when compared between the IS and HC groups, nor between the ACTH-response and ACTH-NR groups which were separated before and after ACTH treatment. Although there was no significant difference between the ACTH-response and ACTH-NR groups with respect to α diversity, there was a significant difference in β diversity. Compared with that of the HCs, the IF of the IS group featured lower proportions of Lactobacillus, Roseburia, and Lachnospira, and a higher proportion of Clostridium. In the IS group, the proportion of Staphylococcus in the IF was higher before treatment than after treatment. Compared with the ACTH-NR group, the ACTH-response group had reduced populations of Odoribacter, Phascolarctobacterium, Anaerotruncus, Mitsuakella, and Robinsoniella. However, an increase was observed in the population of Bifidobacterium. A significant difference was also identified between the IS and HC groups with regard to the expression levels of genes associated with lipoic acid synthesis. CONCLUSIONS: Our analysis demonstrated that imbalance of the IF may be involved in the pathogenesis of IS and is related to response to ACTH. Regulating the composition of the IF may pave the way to developing a potential adjuvant therapy for patients with IS.