Cargando…
Sa503 MACHINE LEARNING OUTPERFORMS TRADITIONAL RISK MODEL IN IDENTIFYING HIGH-NEED, HIGH-COST PATIENTS WITH INFLAMMATORY BOWEL DISEASES IN A NATIONALLY REPRESENTATIVE COHORT
Autores principales: | Nguyen, Nghia H., Patel, Sagar, Gabunilas, Jason, Qian, Alexander, Cecil, Alan, Ohno-Machado, Lucila, Sandborn, William J., Singh, Siddharth, Chen, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AGA Institute. Published by Elsevier Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8108304/ http://dx.doi.org/10.1016/S0016-5085(21)01959-4 |
Ejemplares similares
-
Simplified Machine Learning Models Can Accurately Identify High-Need High-Cost Patients With Inflammatory Bowel Disease
por: Nguyen, Nghia H., et al.
Publicado: (2022) -
Fr503 FEAR OF COVID-19, ALONG WITH STRESS, ANXIETY, AND DEPRESSION, IS ASSOCIATED WITH BIOLOGIC USAGE IN PATIENTS WITH INFLAMMATORY BOWEL DISEASE
por: Shah, Rishabh, et al.
Publicado: (2021) -
Sa571 EVALUATION OF MENTAL STATE AND CLINICAL SYMPTOMS OF CORONAVIRUS PANDEMIC IN PATIENTS WITH INFLAMMATORY BOWEL DISEASE
por: Tani, Mizuki, et al.
Publicado: (2021) -
Sa1064: IMPACT OF COVID-19 PANDEMIC ON PATIENTS WITH INFLAMMATORY BOWEL DISEASE: A LOCAL REPORT
por: Tsipotis, Evangelos, et al.
Publicado: (2022) -
Sa1053: OUTCOMES OF HOSPITALIZED COVID-19 PATIENTS WITH INFLAMMATORY BOWEL DISEASE: A NATIONAL DATABASE STUDY
por: Melquist, Stephanie J., et al.
Publicado: (2022)