Cargando…
SpatialDWLS: accurate deconvolution of spatial transcriptomic data
Recent development of spatial transcriptomic technologies has made it possible to characterize cellular heterogeneity with spatial information. However, the technology often does not have sufficient resolution to distinguish neighboring cell types. Here, we present spatialDWLS, to quantitatively est...
Autores principales: | Dong, Rui, Yuan, Guo-Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8108367/ https://www.ncbi.nlm.nih.gov/pubmed/33971932 http://dx.doi.org/10.1186/s13059-021-02362-7 |
Ejemplares similares
-
DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence
por: Song, Qianqian, et al.
Publicado: (2021) -
Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data
por: Geras, Agnieszka, et al.
Publicado: (2023) -
SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes
por: Elosua-Bayes, Marc, et al.
Publicado: (2021) -
AntiSplodge: a neural-network-based RNA-profile deconvolution pipeline designed for spatial transcriptomics
por: Lund, Jesper B, et al.
Publicado: (2022) -
Spatially Informed Cell Type Deconvolution for Spatial Transcriptomics
por: Ma, Ying, et al.
Publicado: (2022)