Cargando…
The Key Target and Molecular Mechanism of the Volatile Component of Scutellaria baicalensis Georgi in Acute Lung Injury Based on Network Pharmacology
Ethnopharmacological relevance: Scutellaria baicalensis georgi is one of the most widely studied TCMs; its effects in ALI have been studied in a large number of experiments, and the efficacy of volatile oil from TCM remains to be studied. Aim: The volatile component of Scutellaria baicalensis georgi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8109027/ https://www.ncbi.nlm.nih.gov/pubmed/33981230 http://dx.doi.org/10.3389/fphar.2021.650780 |
_version_ | 1783690177826258944 |
---|---|
author | Zhu, Guosong Zhang, Jiaqiang Yang, Yali Zhang, Haoran Jin, Wenwen Su, Fangchu Liang, Junting Wang, Kaiwei Zhang, Jianhua Chen, Chuanliang |
author_facet | Zhu, Guosong Zhang, Jiaqiang Yang, Yali Zhang, Haoran Jin, Wenwen Su, Fangchu Liang, Junting Wang, Kaiwei Zhang, Jianhua Chen, Chuanliang |
author_sort | Zhu, Guosong |
collection | PubMed |
description | Ethnopharmacological relevance: Scutellaria baicalensis georgi is one of the most widely studied TCMs; its effects in ALI have been studied in a large number of experiments, and the efficacy of volatile oil from TCM remains to be studied. Aim: The volatile component of Scutellaria baicalensis georgi was selected to act on the key target of acute lung injury and was preliminarily studied for its specific molecular mechanism. Methods: The volatile active substances of Scutellaria baicalensis georgi were extracted by GC–MS, and the active ingredients related with the occurrence and development of acute lung injury were searched and matched by the TCMSP database. The pharmacologic data and analysis platform of TCM were used to retrieve and screen for the volatile active components and the possible therapeutic targets of Scutellaria baicalensis georgi. In addition, acute lung injury was searched in the disease target database to identify the corresponding disease target proteins, thereby establishing a protein–protein interaction network. Finally, the effects of wogonin on the apoptotic and inflammatory factors in the acute lung injury cell model were analyzed experimentally. Results: We identified 100 candidate targets and successfully constructed a complex target network. The targets identified by the above gene enrichment analysis played important roles in the autoimmune disease cell cycle apoptosis and related signaling pathways. The KEGG pathway analysis showed that most of the target genes were involved in the inflammatory response regulation of the TRP, PI3K-Akt, and IL-17 signaling pathways. The participation of wogonin in the specific regulatory pathways of PI3K-Akt signaling and IL-17 signaling was verified through experiments. In the lung-injured cell model, the results showed that wogonin inhibited the apoptosis of injured lung cells by inhibiting the expression of BAD gene and the activation of cleaved caspase-3 gene while increasing Bcl-2 expression. In addition, wogonin inhibited the expression of the abovementioned inflammatory factors and further inhibited the inflammatory response in the lung injury cells. Conclusion: The results of pharmacological network analysis can predict and explain the regulation mechanism of multi-target and multi-pathway of TCM components. This study identified the potential target and important pathway of wogonin in regulating acute lung injury. At the same time, the accuracy of network pharmacological prediction is also preliminarily verified by molecular biology experiment. |
format | Online Article Text |
id | pubmed-8109027 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-81090272021-05-11 The Key Target and Molecular Mechanism of the Volatile Component of Scutellaria baicalensis Georgi in Acute Lung Injury Based on Network Pharmacology Zhu, Guosong Zhang, Jiaqiang Yang, Yali Zhang, Haoran Jin, Wenwen Su, Fangchu Liang, Junting Wang, Kaiwei Zhang, Jianhua Chen, Chuanliang Front Pharmacol Pharmacology Ethnopharmacological relevance: Scutellaria baicalensis georgi is one of the most widely studied TCMs; its effects in ALI have been studied in a large number of experiments, and the efficacy of volatile oil from TCM remains to be studied. Aim: The volatile component of Scutellaria baicalensis georgi was selected to act on the key target of acute lung injury and was preliminarily studied for its specific molecular mechanism. Methods: The volatile active substances of Scutellaria baicalensis georgi were extracted by GC–MS, and the active ingredients related with the occurrence and development of acute lung injury were searched and matched by the TCMSP database. The pharmacologic data and analysis platform of TCM were used to retrieve and screen for the volatile active components and the possible therapeutic targets of Scutellaria baicalensis georgi. In addition, acute lung injury was searched in the disease target database to identify the corresponding disease target proteins, thereby establishing a protein–protein interaction network. Finally, the effects of wogonin on the apoptotic and inflammatory factors in the acute lung injury cell model were analyzed experimentally. Results: We identified 100 candidate targets and successfully constructed a complex target network. The targets identified by the above gene enrichment analysis played important roles in the autoimmune disease cell cycle apoptosis and related signaling pathways. The KEGG pathway analysis showed that most of the target genes were involved in the inflammatory response regulation of the TRP, PI3K-Akt, and IL-17 signaling pathways. The participation of wogonin in the specific regulatory pathways of PI3K-Akt signaling and IL-17 signaling was verified through experiments. In the lung-injured cell model, the results showed that wogonin inhibited the apoptosis of injured lung cells by inhibiting the expression of BAD gene and the activation of cleaved caspase-3 gene while increasing Bcl-2 expression. In addition, wogonin inhibited the expression of the abovementioned inflammatory factors and further inhibited the inflammatory response in the lung injury cells. Conclusion: The results of pharmacological network analysis can predict and explain the regulation mechanism of multi-target and multi-pathway of TCM components. This study identified the potential target and important pathway of wogonin in regulating acute lung injury. At the same time, the accuracy of network pharmacological prediction is also preliminarily verified by molecular biology experiment. Frontiers Media S.A. 2021-04-26 /pmc/articles/PMC8109027/ /pubmed/33981230 http://dx.doi.org/10.3389/fphar.2021.650780 Text en Copyright © 2021 Zhu, Zhang, Yang, Zhang, Jin, Su, Liang, Wang, Zhang and Chen. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Zhu, Guosong Zhang, Jiaqiang Yang, Yali Zhang, Haoran Jin, Wenwen Su, Fangchu Liang, Junting Wang, Kaiwei Zhang, Jianhua Chen, Chuanliang The Key Target and Molecular Mechanism of the Volatile Component of Scutellaria baicalensis Georgi in Acute Lung Injury Based on Network Pharmacology |
title | The Key Target and Molecular Mechanism of the Volatile Component of Scutellaria baicalensis Georgi in Acute Lung Injury Based on Network Pharmacology |
title_full | The Key Target and Molecular Mechanism of the Volatile Component of Scutellaria baicalensis Georgi in Acute Lung Injury Based on Network Pharmacology |
title_fullStr | The Key Target and Molecular Mechanism of the Volatile Component of Scutellaria baicalensis Georgi in Acute Lung Injury Based on Network Pharmacology |
title_full_unstemmed | The Key Target and Molecular Mechanism of the Volatile Component of Scutellaria baicalensis Georgi in Acute Lung Injury Based on Network Pharmacology |
title_short | The Key Target and Molecular Mechanism of the Volatile Component of Scutellaria baicalensis Georgi in Acute Lung Injury Based on Network Pharmacology |
title_sort | key target and molecular mechanism of the volatile component of scutellaria baicalensis georgi in acute lung injury based on network pharmacology |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8109027/ https://www.ncbi.nlm.nih.gov/pubmed/33981230 http://dx.doi.org/10.3389/fphar.2021.650780 |
work_keys_str_mv | AT zhuguosong thekeytargetandmolecularmechanismofthevolatilecomponentofscutellariabaicalensisgeorgiinacutelunginjurybasedonnetworkpharmacology AT zhangjiaqiang thekeytargetandmolecularmechanismofthevolatilecomponentofscutellariabaicalensisgeorgiinacutelunginjurybasedonnetworkpharmacology AT yangyali thekeytargetandmolecularmechanismofthevolatilecomponentofscutellariabaicalensisgeorgiinacutelunginjurybasedonnetworkpharmacology AT zhanghaoran thekeytargetandmolecularmechanismofthevolatilecomponentofscutellariabaicalensisgeorgiinacutelunginjurybasedonnetworkpharmacology AT jinwenwen thekeytargetandmolecularmechanismofthevolatilecomponentofscutellariabaicalensisgeorgiinacutelunginjurybasedonnetworkpharmacology AT sufangchu thekeytargetandmolecularmechanismofthevolatilecomponentofscutellariabaicalensisgeorgiinacutelunginjurybasedonnetworkpharmacology AT liangjunting thekeytargetandmolecularmechanismofthevolatilecomponentofscutellariabaicalensisgeorgiinacutelunginjurybasedonnetworkpharmacology AT wangkaiwei thekeytargetandmolecularmechanismofthevolatilecomponentofscutellariabaicalensisgeorgiinacutelunginjurybasedonnetworkpharmacology AT zhangjianhua thekeytargetandmolecularmechanismofthevolatilecomponentofscutellariabaicalensisgeorgiinacutelunginjurybasedonnetworkpharmacology AT chenchuanliang thekeytargetandmolecularmechanismofthevolatilecomponentofscutellariabaicalensisgeorgiinacutelunginjurybasedonnetworkpharmacology AT zhuguosong keytargetandmolecularmechanismofthevolatilecomponentofscutellariabaicalensisgeorgiinacutelunginjurybasedonnetworkpharmacology AT zhangjiaqiang keytargetandmolecularmechanismofthevolatilecomponentofscutellariabaicalensisgeorgiinacutelunginjurybasedonnetworkpharmacology AT yangyali keytargetandmolecularmechanismofthevolatilecomponentofscutellariabaicalensisgeorgiinacutelunginjurybasedonnetworkpharmacology AT zhanghaoran keytargetandmolecularmechanismofthevolatilecomponentofscutellariabaicalensisgeorgiinacutelunginjurybasedonnetworkpharmacology AT jinwenwen keytargetandmolecularmechanismofthevolatilecomponentofscutellariabaicalensisgeorgiinacutelunginjurybasedonnetworkpharmacology AT sufangchu keytargetandmolecularmechanismofthevolatilecomponentofscutellariabaicalensisgeorgiinacutelunginjurybasedonnetworkpharmacology AT liangjunting keytargetandmolecularmechanismofthevolatilecomponentofscutellariabaicalensisgeorgiinacutelunginjurybasedonnetworkpharmacology AT wangkaiwei keytargetandmolecularmechanismofthevolatilecomponentofscutellariabaicalensisgeorgiinacutelunginjurybasedonnetworkpharmacology AT zhangjianhua keytargetandmolecularmechanismofthevolatilecomponentofscutellariabaicalensisgeorgiinacutelunginjurybasedonnetworkpharmacology AT chenchuanliang keytargetandmolecularmechanismofthevolatilecomponentofscutellariabaicalensisgeorgiinacutelunginjurybasedonnetworkpharmacology |