Cargando…

Calycosin stimulates the proliferation of endothelial cells, but not breast cancer cells, via a feedback loop involving RP11-65M17.3, BRIP1 and ERα

It is widely accepted that estrogen can be replaced by phytoestrogens to treat postmenopausal cardiovascular disease and possibly decrease the risk of breast cancer. However, few studies have investigated the effects of phytoestrogens on vascular endothelial cells (ECs). In the present study, we sho...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yong, Xie, Wei, Hou, Mengyue, Tian, Jing, Zhang, Xing, Ren, Qianyao, Huang, Yue, Chen, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8109108/
https://www.ncbi.nlm.nih.gov/pubmed/33647882
http://dx.doi.org/10.18632/aging.202641
Descripción
Sumario:It is widely accepted that estrogen can be replaced by phytoestrogens to treat postmenopausal cardiovascular disease and possibly decrease the risk of breast cancer. However, few studies have investigated the effects of phytoestrogens on vascular endothelial cells (ECs). In the present study, we show that the phytoestrogen calycosin (20 μM) stimulated the proliferation of ECs (HUVECs and HMEC-1) but inhibited the growth of breast cancer cells (BCCs) expressing ERα (MCF-7 and T47D). Here we provide evidence for the presence of a positive feedback loop between ERα and long noncoding RNA RP11-65M17.3 in both normal and cancer cells, and calycosin stimulated this feedback loop in ECs but decreased RP11-65M17.3 expression in BCCs. Subsequently, the calycosin-induced activation of this loop decreased the expression of the target of BRIP1 (BRCA1 interacting protein C-terminal helicase 1), increased the phosphorylation of Akt and ERK1/2, and finally inhibited the cleavage of PARP-1 in ECs. In nude mice bearing MCF-7 xenografts, calycosin did not stimulate tumor growth as strongly as 17β-estradiol. Together, these results suggest that calycosin promotes the proliferation of ECs, and notable inhibits the growth of BCCs. A possible reason for these results is the involvement of a feedback loop between ERα and RP11-65M17.3.