Cargando…

GEO data mining and TCGA analysis reveal altered branched chain amino acid metabolism in pancreatic cancer patients

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumor of the digestive system which has a less than 1% 5-year survival rate. The pathogenesis of PDAC development is incompletely understood. Genetic predisposition, disease history of chronic pancreatitis and diabetes elevate the risk o...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jun-Yi, Sun, Fei, Yang, Chun-Liang, Zhou, Hai-Feng, Gao, Min, Zhang, Qi, Chen, Hui, Zhou, Peng, Xiao, Jun, Fan, Heng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8109144/
https://www.ncbi.nlm.nih.gov/pubmed/33882453
http://dx.doi.org/10.18632/aging.202892
Descripción
Sumario:Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumor of the digestive system which has a less than 1% 5-year survival rate. The pathogenesis of PDAC development is incompletely understood. Genetic predisposition, disease history of chronic pancreatitis and diabetes elevate the risk of PDAC while environmental and dietary factors including smoking, alcohol abuse, high fat/protein intake as well as air pollution exacerbate PDAC progression. BCAAs, consisting of leucine, isoleucine and valine are essential amino acids that are obtained from food and play versatile roles in carcinogenesis. Recent studies have demonstrated that BCAA metabolism affects PDAC development but the results are controversial. To explore the possible engagement of BCAA metabolism in PDAC, we took advantage of the GEO and TCGA database and discovered that BCAA uptake is closely related to PDAC development while BCAA catabolism is down-regulated in PDAC tissue. Besides, NOTCH and MYC are differentially involved in BCAA metabolism in tumor and muscle, and enhanced lipid synthesis is independent of BCAA catabolism. Altogether, we highlight BCAA uptake as a promising target for PDAC treatment.