Cargando…
A novel semi-supervised framework for UAV based crop/weed classification
Excessive use of agrochemicals for weed controlling infestation has serious agronomic and environmental repercussions associated. An appropriate amount of pesticide/ chemicals is essential for achieving the desired smart farming and precision agriculture (PA). In this regard, targeted weed control w...
Autores principales: | Khan, Shahbaz, Tufail, Muhammad, Khan, Muhammad Tahir, Khan, Zubair Ahmad, Iqbal, Javaid, Alam, Mansoor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8109769/ https://www.ncbi.nlm.nih.gov/pubmed/33970938 http://dx.doi.org/10.1371/journal.pone.0251008 |
Ejemplares similares
-
Real-time recognition of spraying area for UAV sprayers using a deep learning approach
por: Khan, Shahbaz, et al.
Publicado: (2021) -
Semi-supervised Learning for Weed and Crop Segmentation Using UAV Imagery
por: Nong, Chunshi, et al.
Publicado: (2022) -
Ageratum enation virus—A Begomovirus of Weeds with the Potential to Infect Crops
por: Tahir, Muhammad, et al.
Publicado: (2015) -
A novel framework for classification of two-class motor imagery EEG signals using logistic regression classification algorithm
por: Khan, Rabia Avais, et al.
Publicado: (2023) -
Managing Weed–Crop Interactions Enhances Chickpea (Cicer arietinum L.) Chemical Components
por: Khan, Imtiaz, et al.
Publicado: (2023)