Cargando…
Investigating the Possibility of Green Synthesis of Silver Nanoparticles Using Vaccinium arctostaphlyos Extract and Evaluating Its Antibacterial Properties
OBJECTIVE: Vaccinium genus plants have medicinal value, of which Vaccinium arctostaphylos (Caucasian whortleberry or Qare-Qat in the local language) is the only available species in Iran. Public tendency to use herbal remedies and natural products such as synthesized nanoparticles is increasing due...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8110411/ https://www.ncbi.nlm.nih.gov/pubmed/33997013 http://dx.doi.org/10.1155/2021/5572252 |
_version_ | 1783690297700515840 |
---|---|
author | Khodadadi, Sedighe Mahdinezhad, Nafiseh Fazeli-Nasab, Bahman Heidari, Mohammad Javad Fakheri, Baratali Miri, Abdolhossein |
author_facet | Khodadadi, Sedighe Mahdinezhad, Nafiseh Fazeli-Nasab, Bahman Heidari, Mohammad Javad Fakheri, Baratali Miri, Abdolhossein |
author_sort | Khodadadi, Sedighe |
collection | PubMed |
description | OBJECTIVE: Vaccinium genus plants have medicinal value, of which Vaccinium arctostaphylos (Caucasian whortleberry or Qare-Qat in the local language) is the only available species in Iran. Public tendency to use herbal remedies and natural products such as synthesized nanoparticles is increasing due to the proof of the destructive side effects of chemical drugs. Nanosilver products have been effective against more than 650 microbe types. This study was aimed at assessing the possibility of green synthesis of silver nanoparticles using Vaccinium arctostaphylos aqueous extract and at evaluating its antibacterial properties, as well. MATERIALS AND METHODS: In order to synthesize silver nanoparticles, different volumes of Vaccinium arctostaphylos aqueous extract (3, 5, 10, 15, and 30 ml) were assessed with different silver nitrate solution concentrations (0.5, 1, 3, 5, and 10 mM) and different reaction time durations (1, 3, 5, 10, and 20 minutes) at room temperature using a rotary shaker with a speed of 150 rpm. Ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction analysis (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) were carried out. The antibacterial activity of the aqueous extract and the synthesized nanoparticles was evaluated, as well. RESULTS: Silver nanoparticle formation process was confirmed with XRD analysis, transmission electron microscopy (TEM), and FTIR spectroscopy. The UV-Vis spectroscopy of silver colloidal nanoparticles showed a surface plasmon resonance peak at 443 nm under optimal conditions (3 ml aqueous extract volume, 1 mM silver nitrate solution concentration, and 3 min reaction time under sunlight exposure). The reduction of silver ions to silver nanoparticles in solution was confirmed, as well. Based on X-ray diffraction analysis, the size of silver nanoparticles was in the range of 7-16 nm. TEM images showed an even distribution of silver nanoparticles, with a spherical shape. FTIR spectroscopy demonstrated the presence of different functional groups of oxygenated compounds such as carboxyl, hydroxyl, and nitrogenous groups. The antibacterial properties of the synthesized nanoparticles were confirmed. CONCLUSION: The synthesized nanoparticles showed more antibacterial properties against gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) than gram-negative ones (Escherichia coli and Salmonella enteritidis). |
format | Online Article Text |
id | pubmed-8110411 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-81104112021-05-13 Investigating the Possibility of Green Synthesis of Silver Nanoparticles Using Vaccinium arctostaphlyos Extract and Evaluating Its Antibacterial Properties Khodadadi, Sedighe Mahdinezhad, Nafiseh Fazeli-Nasab, Bahman Heidari, Mohammad Javad Fakheri, Baratali Miri, Abdolhossein Biomed Res Int Research Article OBJECTIVE: Vaccinium genus plants have medicinal value, of which Vaccinium arctostaphylos (Caucasian whortleberry or Qare-Qat in the local language) is the only available species in Iran. Public tendency to use herbal remedies and natural products such as synthesized nanoparticles is increasing due to the proof of the destructive side effects of chemical drugs. Nanosilver products have been effective against more than 650 microbe types. This study was aimed at assessing the possibility of green synthesis of silver nanoparticles using Vaccinium arctostaphylos aqueous extract and at evaluating its antibacterial properties, as well. MATERIALS AND METHODS: In order to synthesize silver nanoparticles, different volumes of Vaccinium arctostaphylos aqueous extract (3, 5, 10, 15, and 30 ml) were assessed with different silver nitrate solution concentrations (0.5, 1, 3, 5, and 10 mM) and different reaction time durations (1, 3, 5, 10, and 20 minutes) at room temperature using a rotary shaker with a speed of 150 rpm. Ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction analysis (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) were carried out. The antibacterial activity of the aqueous extract and the synthesized nanoparticles was evaluated, as well. RESULTS: Silver nanoparticle formation process was confirmed with XRD analysis, transmission electron microscopy (TEM), and FTIR spectroscopy. The UV-Vis spectroscopy of silver colloidal nanoparticles showed a surface plasmon resonance peak at 443 nm under optimal conditions (3 ml aqueous extract volume, 1 mM silver nitrate solution concentration, and 3 min reaction time under sunlight exposure). The reduction of silver ions to silver nanoparticles in solution was confirmed, as well. Based on X-ray diffraction analysis, the size of silver nanoparticles was in the range of 7-16 nm. TEM images showed an even distribution of silver nanoparticles, with a spherical shape. FTIR spectroscopy demonstrated the presence of different functional groups of oxygenated compounds such as carboxyl, hydroxyl, and nitrogenous groups. The antibacterial properties of the synthesized nanoparticles were confirmed. CONCLUSION: The synthesized nanoparticles showed more antibacterial properties against gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) than gram-negative ones (Escherichia coli and Salmonella enteritidis). Hindawi 2021-05-03 /pmc/articles/PMC8110411/ /pubmed/33997013 http://dx.doi.org/10.1155/2021/5572252 Text en Copyright © 2021 Sedighe Khodadadi et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Khodadadi, Sedighe Mahdinezhad, Nafiseh Fazeli-Nasab, Bahman Heidari, Mohammad Javad Fakheri, Baratali Miri, Abdolhossein Investigating the Possibility of Green Synthesis of Silver Nanoparticles Using Vaccinium arctostaphlyos Extract and Evaluating Its Antibacterial Properties |
title | Investigating the Possibility of Green Synthesis of Silver Nanoparticles Using Vaccinium arctostaphlyos Extract and Evaluating Its Antibacterial Properties |
title_full | Investigating the Possibility of Green Synthesis of Silver Nanoparticles Using Vaccinium arctostaphlyos Extract and Evaluating Its Antibacterial Properties |
title_fullStr | Investigating the Possibility of Green Synthesis of Silver Nanoparticles Using Vaccinium arctostaphlyos Extract and Evaluating Its Antibacterial Properties |
title_full_unstemmed | Investigating the Possibility of Green Synthesis of Silver Nanoparticles Using Vaccinium arctostaphlyos Extract and Evaluating Its Antibacterial Properties |
title_short | Investigating the Possibility of Green Synthesis of Silver Nanoparticles Using Vaccinium arctostaphlyos Extract and Evaluating Its Antibacterial Properties |
title_sort | investigating the possibility of green synthesis of silver nanoparticles using vaccinium arctostaphlyos extract and evaluating its antibacterial properties |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8110411/ https://www.ncbi.nlm.nih.gov/pubmed/33997013 http://dx.doi.org/10.1155/2021/5572252 |
work_keys_str_mv | AT khodadadisedighe investigatingthepossibilityofgreensynthesisofsilvernanoparticlesusingvacciniumarctostaphlyosextractandevaluatingitsantibacterialproperties AT mahdinezhadnafiseh investigatingthepossibilityofgreensynthesisofsilvernanoparticlesusingvacciniumarctostaphlyosextractandevaluatingitsantibacterialproperties AT fazelinasabbahman investigatingthepossibilityofgreensynthesisofsilvernanoparticlesusingvacciniumarctostaphlyosextractandevaluatingitsantibacterialproperties AT heidarimohammadjavad investigatingthepossibilityofgreensynthesisofsilvernanoparticlesusingvacciniumarctostaphlyosextractandevaluatingitsantibacterialproperties AT fakheribaratali investigatingthepossibilityofgreensynthesisofsilvernanoparticlesusingvacciniumarctostaphlyosextractandevaluatingitsantibacterialproperties AT miriabdolhossein investigatingthepossibilityofgreensynthesisofsilvernanoparticlesusingvacciniumarctostaphlyosextractandevaluatingitsantibacterialproperties |