Cargando…
Novel AI driven approach to classify infant motor functions
The past decade has evinced a boom of computer-based approaches to aid movement assessment in early infancy. Increasing interests have been dedicated to develop AI driven approaches to complement the classic Prechtl general movements assessment (GMA). This study proposes a novel machine learning alg...
Autores principales: | Reich, Simon, Zhang, Dajie, Kulvicius, Tomas, Bölte, Sven, Nielsen-Saines, Karin, Pokorny, Florian B., Peharz, Robert, Poustka, Luise, Wörgötter, Florentin, Einspieler, Christa, Marschik, Peter B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8110753/ https://www.ncbi.nlm.nih.gov/pubmed/33972661 http://dx.doi.org/10.1038/s41598-021-89347-5 |
Ejemplares similares
-
Infant movement classification through pressure distribution analysis
por: Kulvicius, Tomas, et al.
Publicado: (2023) -
The future of General Movement Assessment: The role of computer vision and machine learning – A scoping review
por: Silva, Nelson, et al.
Publicado: (2021) -
Open video data sharing in developmental science and clinical practice
por: Marschik, Peter B., et al.
Publicado: (2023) -
Emerging Verbal Functions in Early Infancy: Lessons from Observational and Computational Approaches on Typical Development and Neurodevelopmental Disorders
por: Marschik, Peter B., et al.
Publicado: (2022) -
Identifying Atypical Development: A Role of Day-Care Workers?
por: Zhang, Dajie, et al.
Publicado: (2019)