Cargando…

Dipolar-stabilized first and second-order antiskyrmions in ferrimagnetic multilayers

Skyrmions and antiskyrmions are topologically protected spin structures with opposite vorticities. Particularly in coexisting phases, these two types of magnetic quasi-particles may show fascinating physics and potential for spintronic devices. While skyrmions are observed in a wide range of materia...

Descripción completa

Detalles Bibliográficos
Autores principales: Heigl, Michael, Koraltan, Sabri, Vaňatka, Marek, Kraft, Robert, Abert, Claas, Vogler, Christoph, Semisalova, Anna, Che, Ping, Ullrich, Aladin, Schmidt, Timo, Hintermayr, Julian, Grundler, Dirk, Farle, Michael, Urbánek, Michal, Suess, Dieter, Albrecht, Manfred
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8110839/
https://www.ncbi.nlm.nih.gov/pubmed/33972515
http://dx.doi.org/10.1038/s41467-021-22600-7
_version_ 1783690373720178688
author Heigl, Michael
Koraltan, Sabri
Vaňatka, Marek
Kraft, Robert
Abert, Claas
Vogler, Christoph
Semisalova, Anna
Che, Ping
Ullrich, Aladin
Schmidt, Timo
Hintermayr, Julian
Grundler, Dirk
Farle, Michael
Urbánek, Michal
Suess, Dieter
Albrecht, Manfred
author_facet Heigl, Michael
Koraltan, Sabri
Vaňatka, Marek
Kraft, Robert
Abert, Claas
Vogler, Christoph
Semisalova, Anna
Che, Ping
Ullrich, Aladin
Schmidt, Timo
Hintermayr, Julian
Grundler, Dirk
Farle, Michael
Urbánek, Michal
Suess, Dieter
Albrecht, Manfred
author_sort Heigl, Michael
collection PubMed
description Skyrmions and antiskyrmions are topologically protected spin structures with opposite vorticities. Particularly in coexisting phases, these two types of magnetic quasi-particles may show fascinating physics and potential for spintronic devices. While skyrmions are observed in a wide range of materials, until now antiskyrmions were exclusive to materials with D(2d) symmetry. In this work, we show first and second-order antiskyrmions stabilized by magnetic dipole–dipole interaction in Fe/Gd-based multilayers. We modify the magnetic properties of the multilayers by Ir insertion layers. Using Lorentz transmission electron microscopy imaging, we observe coexisting antiskyrmions, Bloch skyrmions, and type-2 bubbles and determine the range of material properties and magnetic fields where the different spin objects form and dissipate. We perform micromagnetic simulations to obtain more insight into the studied system and conclude that the reduction of saturation magnetization and uniaxial magnetic anisotropy leads to the existence of this zoo of different spin objects and that they are primarily stabilized by dipolar interaction.
format Online
Article
Text
id pubmed-8110839
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-81108392021-05-14 Dipolar-stabilized first and second-order antiskyrmions in ferrimagnetic multilayers Heigl, Michael Koraltan, Sabri Vaňatka, Marek Kraft, Robert Abert, Claas Vogler, Christoph Semisalova, Anna Che, Ping Ullrich, Aladin Schmidt, Timo Hintermayr, Julian Grundler, Dirk Farle, Michael Urbánek, Michal Suess, Dieter Albrecht, Manfred Nat Commun Article Skyrmions and antiskyrmions are topologically protected spin structures with opposite vorticities. Particularly in coexisting phases, these two types of magnetic quasi-particles may show fascinating physics and potential for spintronic devices. While skyrmions are observed in a wide range of materials, until now antiskyrmions were exclusive to materials with D(2d) symmetry. In this work, we show first and second-order antiskyrmions stabilized by magnetic dipole–dipole interaction in Fe/Gd-based multilayers. We modify the magnetic properties of the multilayers by Ir insertion layers. Using Lorentz transmission electron microscopy imaging, we observe coexisting antiskyrmions, Bloch skyrmions, and type-2 bubbles and determine the range of material properties and magnetic fields where the different spin objects form and dissipate. We perform micromagnetic simulations to obtain more insight into the studied system and conclude that the reduction of saturation magnetization and uniaxial magnetic anisotropy leads to the existence of this zoo of different spin objects and that they are primarily stabilized by dipolar interaction. Nature Publishing Group UK 2021-05-10 /pmc/articles/PMC8110839/ /pubmed/33972515 http://dx.doi.org/10.1038/s41467-021-22600-7 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Heigl, Michael
Koraltan, Sabri
Vaňatka, Marek
Kraft, Robert
Abert, Claas
Vogler, Christoph
Semisalova, Anna
Che, Ping
Ullrich, Aladin
Schmidt, Timo
Hintermayr, Julian
Grundler, Dirk
Farle, Michael
Urbánek, Michal
Suess, Dieter
Albrecht, Manfred
Dipolar-stabilized first and second-order antiskyrmions in ferrimagnetic multilayers
title Dipolar-stabilized first and second-order antiskyrmions in ferrimagnetic multilayers
title_full Dipolar-stabilized first and second-order antiskyrmions in ferrimagnetic multilayers
title_fullStr Dipolar-stabilized first and second-order antiskyrmions in ferrimagnetic multilayers
title_full_unstemmed Dipolar-stabilized first and second-order antiskyrmions in ferrimagnetic multilayers
title_short Dipolar-stabilized first and second-order antiskyrmions in ferrimagnetic multilayers
title_sort dipolar-stabilized first and second-order antiskyrmions in ferrimagnetic multilayers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8110839/
https://www.ncbi.nlm.nih.gov/pubmed/33972515
http://dx.doi.org/10.1038/s41467-021-22600-7
work_keys_str_mv AT heiglmichael dipolarstabilizedfirstandsecondorderantiskyrmionsinferrimagneticmultilayers
AT koraltansabri dipolarstabilizedfirstandsecondorderantiskyrmionsinferrimagneticmultilayers
AT vanatkamarek dipolarstabilizedfirstandsecondorderantiskyrmionsinferrimagneticmultilayers
AT kraftrobert dipolarstabilizedfirstandsecondorderantiskyrmionsinferrimagneticmultilayers
AT abertclaas dipolarstabilizedfirstandsecondorderantiskyrmionsinferrimagneticmultilayers
AT voglerchristoph dipolarstabilizedfirstandsecondorderantiskyrmionsinferrimagneticmultilayers
AT semisalovaanna dipolarstabilizedfirstandsecondorderantiskyrmionsinferrimagneticmultilayers
AT cheping dipolarstabilizedfirstandsecondorderantiskyrmionsinferrimagneticmultilayers
AT ullrichaladin dipolarstabilizedfirstandsecondorderantiskyrmionsinferrimagneticmultilayers
AT schmidttimo dipolarstabilizedfirstandsecondorderantiskyrmionsinferrimagneticmultilayers
AT hintermayrjulian dipolarstabilizedfirstandsecondorderantiskyrmionsinferrimagneticmultilayers
AT grundlerdirk dipolarstabilizedfirstandsecondorderantiskyrmionsinferrimagneticmultilayers
AT farlemichael dipolarstabilizedfirstandsecondorderantiskyrmionsinferrimagneticmultilayers
AT urbanekmichal dipolarstabilizedfirstandsecondorderantiskyrmionsinferrimagneticmultilayers
AT suessdieter dipolarstabilizedfirstandsecondorderantiskyrmionsinferrimagneticmultilayers
AT albrechtmanfred dipolarstabilizedfirstandsecondorderantiskyrmionsinferrimagneticmultilayers