Cargando…

Temas de contenido y voces influyentes dentro de la oposición a las vacunas en Twitter, 2019(*)

OBJECTIVES. To report on vaccine opposition and misinformation promoted on Twitter, highlighting Twitter accounts that drive conversation. METHODS. We used supervised machine learning to code all Twitter posts. We first identified codes and themes manually by using a grounded theoretical approach an...

Descripción completa

Detalles Bibliográficos
Autores principales: Bonnevie, Erika, Goldbarg, Jaclyn, Gallegos-Jeffry, Allison K., Rosenberg, Sarah D., Wartella, Ellen, Smyser, Joe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Organización Panamericana de la Salud 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8110876/
https://www.ncbi.nlm.nih.gov/pubmed/33995521
http://dx.doi.org/10.26633/RPSP.2021.54
_version_ 1783690382465302528
author Bonnevie, Erika
Goldbarg, Jaclyn
Gallegos-Jeffry, Allison K.
Rosenberg, Sarah D.
Wartella, Ellen
Smyser, Joe
author_facet Bonnevie, Erika
Goldbarg, Jaclyn
Gallegos-Jeffry, Allison K.
Rosenberg, Sarah D.
Wartella, Ellen
Smyser, Joe
author_sort Bonnevie, Erika
collection PubMed
description OBJECTIVES. To report on vaccine opposition and misinformation promoted on Twitter, highlighting Twitter accounts that drive conversation. METHODS. We used supervised machine learning to code all Twitter posts. We first identified codes and themes manually by using a grounded theoretical approach and then applied them to the full data set algorithmically. We identified the top 50 authors month-over-month to determine influential sources of information related to vaccine opposition. RESULTS. The data collection period was June 1 to December 1, 2019, resulting in 356 594 mentions of vaccine opposition. A total of 129 Twitter authors met the qualification of a top author in at least 1 month. Top authors were responsible for 59.5% of vaccine-opposition messages. We identified 10 conversation themes. Themes were similarly distributed across top authors and all other authors mentioning vaccine opposition. Top authors appeared to be highly coordinated in their promotion of misinformation within themes. CONCLUSIONS. Public health has struggled to respond to vaccine misinformation. Results indicate that sources of vaccine misinformation are not as heterogeneous or distributed as it may first appear given the volume of messages. There are identifiable upstream sources of misinformation, which may aid in countermessaging and public health surveillance.
format Online
Article
Text
id pubmed-8110876
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Organización Panamericana de la Salud
record_format MEDLINE/PubMed
spelling pubmed-81108762021-05-13 Temas de contenido y voces influyentes dentro de la oposición a las vacunas en Twitter, 2019(*) Bonnevie, Erika Goldbarg, Jaclyn Gallegos-Jeffry, Allison K. Rosenberg, Sarah D. Wartella, Ellen Smyser, Joe Rev Panam Salud Publica Investigación Original OBJECTIVES. To report on vaccine opposition and misinformation promoted on Twitter, highlighting Twitter accounts that drive conversation. METHODS. We used supervised machine learning to code all Twitter posts. We first identified codes and themes manually by using a grounded theoretical approach and then applied them to the full data set algorithmically. We identified the top 50 authors month-over-month to determine influential sources of information related to vaccine opposition. RESULTS. The data collection period was June 1 to December 1, 2019, resulting in 356 594 mentions of vaccine opposition. A total of 129 Twitter authors met the qualification of a top author in at least 1 month. Top authors were responsible for 59.5% of vaccine-opposition messages. We identified 10 conversation themes. Themes were similarly distributed across top authors and all other authors mentioning vaccine opposition. Top authors appeared to be highly coordinated in their promotion of misinformation within themes. CONCLUSIONS. Public health has struggled to respond to vaccine misinformation. Results indicate that sources of vaccine misinformation are not as heterogeneous or distributed as it may first appear given the volume of messages. There are identifiable upstream sources of misinformation, which may aid in countermessaging and public health surveillance. Organización Panamericana de la Salud 2021-05-12 /pmc/articles/PMC8110876/ /pubmed/33995521 http://dx.doi.org/10.26633/RPSP.2021.54 Text en https://creativecommons.org/licenses/by/2.5/Este es un artículo de acceso abierto distribuido bajo los términos de la licencia Creative Commons Attribution-NonCommercial-NoDerivs 3.0 IGO, que permite su uso, distribución y reproducción en cualquier medio, siempre que el trabajo original se cite de la manera adecuada. No se permiten modificaciones a los artículos ni su uso comercial. Al reproducir un artículo no debe haber ningún indicio de que la OPS o el artículo avalan a una organización o un producto específico. El uso del logo de la OPS no está permitido. Esta leyenda debe conservarse, junto con la URL original del artículo. Crédito del logo y texto open access: PLoS, bajo licencia Creative Commons Attribution-Share Alike 3.0 Unported.
spellingShingle Investigación Original
Bonnevie, Erika
Goldbarg, Jaclyn
Gallegos-Jeffry, Allison K.
Rosenberg, Sarah D.
Wartella, Ellen
Smyser, Joe
Temas de contenido y voces influyentes dentro de la oposición a las vacunas en Twitter, 2019(*)
title Temas de contenido y voces influyentes dentro de la oposición a las vacunas en Twitter, 2019(*)
title_full Temas de contenido y voces influyentes dentro de la oposición a las vacunas en Twitter, 2019(*)
title_fullStr Temas de contenido y voces influyentes dentro de la oposición a las vacunas en Twitter, 2019(*)
title_full_unstemmed Temas de contenido y voces influyentes dentro de la oposición a las vacunas en Twitter, 2019(*)
title_short Temas de contenido y voces influyentes dentro de la oposición a las vacunas en Twitter, 2019(*)
title_sort temas de contenido y voces influyentes dentro de la oposición a las vacunas en twitter, 2019(*)
topic Investigación Original
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8110876/
https://www.ncbi.nlm.nih.gov/pubmed/33995521
http://dx.doi.org/10.26633/RPSP.2021.54
work_keys_str_mv AT bonnevieerika temasdecontenidoyvocesinfluyentesdentrodelaoposicionalasvacunasentwitter2019
AT goldbargjaclyn temasdecontenidoyvocesinfluyentesdentrodelaoposicionalasvacunasentwitter2019
AT gallegosjeffryallisonk temasdecontenidoyvocesinfluyentesdentrodelaoposicionalasvacunasentwitter2019
AT rosenbergsarahd temasdecontenidoyvocesinfluyentesdentrodelaoposicionalasvacunasentwitter2019
AT wartellaellen temasdecontenidoyvocesinfluyentesdentrodelaoposicionalasvacunasentwitter2019
AT smyserjoe temasdecontenidoyvocesinfluyentesdentrodelaoposicionalasvacunasentwitter2019