Cargando…
Temas de contenido y voces influyentes dentro de la oposición a las vacunas en Twitter, 2019(*)
OBJECTIVES. To report on vaccine opposition and misinformation promoted on Twitter, highlighting Twitter accounts that drive conversation. METHODS. We used supervised machine learning to code all Twitter posts. We first identified codes and themes manually by using a grounded theoretical approach an...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Organización Panamericana de la Salud
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8110876/ https://www.ncbi.nlm.nih.gov/pubmed/33995521 http://dx.doi.org/10.26633/RPSP.2021.54 |
_version_ | 1783690382465302528 |
---|---|
author | Bonnevie, Erika Goldbarg, Jaclyn Gallegos-Jeffry, Allison K. Rosenberg, Sarah D. Wartella, Ellen Smyser, Joe |
author_facet | Bonnevie, Erika Goldbarg, Jaclyn Gallegos-Jeffry, Allison K. Rosenberg, Sarah D. Wartella, Ellen Smyser, Joe |
author_sort | Bonnevie, Erika |
collection | PubMed |
description | OBJECTIVES. To report on vaccine opposition and misinformation promoted on Twitter, highlighting Twitter accounts that drive conversation. METHODS. We used supervised machine learning to code all Twitter posts. We first identified codes and themes manually by using a grounded theoretical approach and then applied them to the full data set algorithmically. We identified the top 50 authors month-over-month to determine influential sources of information related to vaccine opposition. RESULTS. The data collection period was June 1 to December 1, 2019, resulting in 356 594 mentions of vaccine opposition. A total of 129 Twitter authors met the qualification of a top author in at least 1 month. Top authors were responsible for 59.5% of vaccine-opposition messages. We identified 10 conversation themes. Themes were similarly distributed across top authors and all other authors mentioning vaccine opposition. Top authors appeared to be highly coordinated in their promotion of misinformation within themes. CONCLUSIONS. Public health has struggled to respond to vaccine misinformation. Results indicate that sources of vaccine misinformation are not as heterogeneous or distributed as it may first appear given the volume of messages. There are identifiable upstream sources of misinformation, which may aid in countermessaging and public health surveillance. |
format | Online Article Text |
id | pubmed-8110876 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Organización Panamericana de la Salud |
record_format | MEDLINE/PubMed |
spelling | pubmed-81108762021-05-13 Temas de contenido y voces influyentes dentro de la oposición a las vacunas en Twitter, 2019(*) Bonnevie, Erika Goldbarg, Jaclyn Gallegos-Jeffry, Allison K. Rosenberg, Sarah D. Wartella, Ellen Smyser, Joe Rev Panam Salud Publica Investigación Original OBJECTIVES. To report on vaccine opposition and misinformation promoted on Twitter, highlighting Twitter accounts that drive conversation. METHODS. We used supervised machine learning to code all Twitter posts. We first identified codes and themes manually by using a grounded theoretical approach and then applied them to the full data set algorithmically. We identified the top 50 authors month-over-month to determine influential sources of information related to vaccine opposition. RESULTS. The data collection period was June 1 to December 1, 2019, resulting in 356 594 mentions of vaccine opposition. A total of 129 Twitter authors met the qualification of a top author in at least 1 month. Top authors were responsible for 59.5% of vaccine-opposition messages. We identified 10 conversation themes. Themes were similarly distributed across top authors and all other authors mentioning vaccine opposition. Top authors appeared to be highly coordinated in their promotion of misinformation within themes. CONCLUSIONS. Public health has struggled to respond to vaccine misinformation. Results indicate that sources of vaccine misinformation are not as heterogeneous or distributed as it may first appear given the volume of messages. There are identifiable upstream sources of misinformation, which may aid in countermessaging and public health surveillance. Organización Panamericana de la Salud 2021-05-12 /pmc/articles/PMC8110876/ /pubmed/33995521 http://dx.doi.org/10.26633/RPSP.2021.54 Text en https://creativecommons.org/licenses/by/2.5/Este es un artículo de acceso abierto distribuido bajo los términos de la licencia Creative Commons Attribution-NonCommercial-NoDerivs 3.0 IGO, que permite su uso, distribución y reproducción en cualquier medio, siempre que el trabajo original se cite de la manera adecuada. No se permiten modificaciones a los artículos ni su uso comercial. Al reproducir un artículo no debe haber ningún indicio de que la OPS o el artículo avalan a una organización o un producto específico. El uso del logo de la OPS no está permitido. Esta leyenda debe conservarse, junto con la URL original del artículo. Crédito del logo y texto open access: PLoS, bajo licencia Creative Commons Attribution-Share Alike 3.0 Unported. |
spellingShingle | Investigación Original Bonnevie, Erika Goldbarg, Jaclyn Gallegos-Jeffry, Allison K. Rosenberg, Sarah D. Wartella, Ellen Smyser, Joe Temas de contenido y voces influyentes dentro de la oposición a las vacunas en Twitter, 2019(*) |
title | Temas de contenido y voces influyentes dentro de la oposición a las vacunas en Twitter, 2019(*) |
title_full | Temas de contenido y voces influyentes dentro de la oposición a las vacunas en Twitter, 2019(*) |
title_fullStr | Temas de contenido y voces influyentes dentro de la oposición a las vacunas en Twitter, 2019(*) |
title_full_unstemmed | Temas de contenido y voces influyentes dentro de la oposición a las vacunas en Twitter, 2019(*) |
title_short | Temas de contenido y voces influyentes dentro de la oposición a las vacunas en Twitter, 2019(*) |
title_sort | temas de contenido y voces influyentes dentro de la oposición a las vacunas en twitter, 2019(*) |
topic | Investigación Original |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8110876/ https://www.ncbi.nlm.nih.gov/pubmed/33995521 http://dx.doi.org/10.26633/RPSP.2021.54 |
work_keys_str_mv | AT bonnevieerika temasdecontenidoyvocesinfluyentesdentrodelaoposicionalasvacunasentwitter2019 AT goldbargjaclyn temasdecontenidoyvocesinfluyentesdentrodelaoposicionalasvacunasentwitter2019 AT gallegosjeffryallisonk temasdecontenidoyvocesinfluyentesdentrodelaoposicionalasvacunasentwitter2019 AT rosenbergsarahd temasdecontenidoyvocesinfluyentesdentrodelaoposicionalasvacunasentwitter2019 AT wartellaellen temasdecontenidoyvocesinfluyentesdentrodelaoposicionalasvacunasentwitter2019 AT smyserjoe temasdecontenidoyvocesinfluyentesdentrodelaoposicionalasvacunasentwitter2019 |