Cargando…
Comparing Pre-trained and Feature-Based Models for Prediction of Alzheimer's Disease Based on Speech
Introduction: Research related to the automatic detection of Alzheimer's disease (AD) is important, given the high prevalence of AD and the high cost of traditional diagnostic methods. Since AD significantly affects the content and acoustics of spontaneous speech, natural language processing, a...
Autores principales: | Balagopalan, Aparna, Eyre, Benjamin, Robin, Jessica, Rudzicz, Frank, Novikova, Jekaterina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8110916/ https://www.ncbi.nlm.nih.gov/pubmed/33986655 http://dx.doi.org/10.3389/fnagi.2021.635945 |
Ejemplares similares
-
Exploring the Use of Natural Language Processing for Objective Assessment of Disorganized Speech in Schizophrenia
por: Jeong, Lydia, et al.
Publicado: (2023) -
Automated detection of progressive speech changes in early Alzheimer's disease
por: Robin, Jessica, et al.
Publicado: (2023) -
Correlating natural language processing and automated speech analysis with clinician assessment to quantify speech-language changes in mild cognitive impairment and Alzheimer’s dementia
por: Yeung, Anthony, et al.
Publicado: (2021) -
Temporal Integration of Text Transcripts and Acoustic Features for Alzheimer's Diagnosis Based on Spontaneous Speech
por: Martinc, Matej, et al.
Publicado: (2021) -
Machine learning for MEG during speech tasks
por: Kostas, Demetres, et al.
Publicado: (2019)