Cargando…
Distribution Atlas of COVID-19 Pneumonia on Computed Tomography: A Deep Learning Based Description
OBJECTIVES: To construct a distribution atlas of coronavirus disease 2019 (COVID-19) pneumonia on computed tomography (CT) and further explore the difference in distribution by location and disease severity through a retrospective study of 484 cases in Jiangsu, China. METHODS: All patients diagnosed...
Autores principales: | Huang, Shan, Wang, Yuancheng, Zhou, Zhen, Yu, Qian, Yu, Yizhou, Yang, Yi, Ju, Shenghong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8111058/ https://www.ncbi.nlm.nih.gov/pubmed/35233557 http://dx.doi.org/10.1007/s43657-021-00011-4 |
Ejemplares similares
-
Dynamic evolution of COVID-19 on chest computed tomography: experience from Jiangsu Province of China
por: Wang, Yuan-Cheng, et al.
Publicado: (2020) -
Multicenter cohort study demonstrates more consolidation in upper lungs on initial CT increases the risk of adverse clinical outcome in COVID-19 patients
por: Yu, Qian, et al.
Publicado: (2020) -
Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography
por: Chen, Jun, et al.
Publicado: (2020) -
Role of Deep Learning in Computed Tomography
por: Garg, Yash, et al.
Publicado: (2023) -
DeepACP: A Novel Computational Approach for Accurate Identification of Anticancer Peptides by Deep Learning Algorithm
por: Yu, Lezheng, et al.
Publicado: (2020)