Cargando…
Micro-MRI improves the accuracy of clinical diagnosis in cerebral small vessel disease
Even with postmortem pathological examination, only limited information is provided of the foci of in vivo clinical information. Cerebral small vessel disease, which is associated with ageing, dementia and stroke, highlights the difficulty in arriving at a definitive diagnosis of the lesions detecte...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8111066/ https://www.ncbi.nlm.nih.gov/pubmed/33997783 http://dx.doi.org/10.1093/braincomms/fcab070 |
Sumario: | Even with postmortem pathological examination, only limited information is provided of the foci of in vivo clinical information. Cerebral small vessel disease, which is associated with ageing, dementia and stroke, highlights the difficulty in arriving at a definitive diagnosis of the lesions detected on in vivo radiological examination. We performed a radiological−pathological comparative study using ex vivo MRI to examine small cerebral lesions. Four patients with small vessel disease lesions detected on in vivo MRI were studied. Exact pathological findings of in vivo MRI-detected lesions were revealed. The ischaemic lesion after 17 days from onset showed positivity for peroxiredoxin, cluster of differentiation 204 and glial fibrillary acidic protein, indicating sterile inflammation and neuroprotective reaction. Cortical microinfarcts beneath the cortical superficial siderosis were associated with inflammation from the superficial layer in a patient with cerebral amyloid angiopathy; in this patient, a bilinear track-like appearance of the cortical superficial siderosis on the ex vivo MRI was compatible with iron deposition on the pia matter and within cortical layers II–III. An in vivo MRI-detected cerebral microbleed was revealed to be heterogeneous. An in vivo MRI-detected cerebral microbleed was revealed to be a venous angioma. Furthermore, a neuropathologically confirmed embolic cerebral microbleed was firstly detected using this method. Our results suggest that in vivo MRI-detected lobar cerebral microbleeds can be caused by non-cerebral amyloid angiopathy aetiologies, such as microembolism and venous angioma. Venous angioma and embolic microbleeds may mimic cerebral amyloid angiopathy markers on in vivo MRI. To clarify the clinical importance of these lesions, we should investigate their rate and frequency in a large cohort of healthy individuals and patients with cardiac risk factors. Thus, we provide evidence that ex vivo micro-MRI improves the clinical diagnosis of small vessel diseases. |
---|