Cargando…

Yield stability analysis of orange - Fleshed sweet potato in Indonesia using AMMI and GGE biplot

Orange-Fleshed Sweet Potato (OFSP) is an important crop in Indonesia. Yield potential and genotypic adaptability are important factors in varietal development. The purpose of this study was to estimate the stability of yield and to select the best OFSP genotypes across three agroecosystems in West J...

Descripción completa

Detalles Bibliográficos
Autores principales: Karuniawan, Agung, Maulana, Haris, Ustari, Debby, Dewayani, Sitaresmi, Solihin, Eso, Solihin, M. Amir, Amien, Suseno, Arifin, Mahfud
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8111592/
https://www.ncbi.nlm.nih.gov/pubmed/34007919
http://dx.doi.org/10.1016/j.heliyon.2021.e06881
Descripción
Sumario:Orange-Fleshed Sweet Potato (OFSP) is an important crop in Indonesia. Yield potential and genotypic adaptability are important factors in varietal development. The purpose of this study was to estimate the stability of yield and to select the best OFSP genotypes across three agroecosystems in West Java, Indonesia. The field trials used were augmented design with 50 F1 Orange-Fleshed Sweet Potato (OFSP) genotypes as treatment, and seven check varieties as controls. The experiments were conducted in three different agroecosystems in West Java (Sumedang, Bandung, and Karawang). Selection was based on physical characteristics of sweet potato tuber, yield and stability across three environments. Data analysis of the yield characters, yield component, and tuber quality were performed by combined variance analysis. Selected genotypes were analyzed for stability yield using the parametric, non-parametric, Additive Main effects and Multiplicative Interaction (AMMI), AMMI Stability Value (ASV), and Genotype and Genotype by Environment (GGE) biplot models. Results identified the top best ten F1 genotypes namely F1-38 (G1), F1-69 (G2), F1-71 (G3), F1-77 (G4), F1-127 (G5), F1-128 (G6), F1-135 (G7), F1-159 (G8), F1-191 (G9), and F1-226 (G10). Location showed a significant effect on yield. Genotypes F1-069, F1-077, F1-226, F1-038, and F1-128 have the lowest ASR based on non-parametric and parametric stability models and there were identified as the most stable. AMMI analysis identified F1-128, F1-135, F1-038, and F1-069 as the most stable genotypes. F1-38 (G1), F1-69 (G2), F1-128 (G6) were found to be the most stable genotypes based on ASV analysis, while GGE biplot identified F1-38 (G1) and F1-69 (G2) genotypes as the stable genotypes. Other genotypes were considered to as location-specific. Based on AMMI, ASV, and GGE Biplot models, F1-038, and F1-069 were identified as stable genotypes. They produced higher yields than other genotypes. Therefore, the F1-038 and F1-069 genotypes can be potentially recommended as superior varieties for West Java, Indonesia.