Cargando…
Limiting the areas inspected by lung ultrasound leads to an underestimation of COVID-19 patients’ condition
Autores principales: | Mento, Federico, Perrone, Tiziano, Fiengo, Anna, Tursi, Francesco, Macioce, Veronica Narvena, Smargiassi, Andrea, Inchingolo, Riccardo, Demi, Libertario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8111857/ https://www.ncbi.nlm.nih.gov/pubmed/33974109 http://dx.doi.org/10.1007/s00134-021-06407-0 |
Ejemplares similares
-
Lung Ultrasound in COVID‐19 and Post‐COVID‐19 Patients, an Evidence‐Based Approach
por: Demi, Libertario, et al.
Publicado: (2021) -
Multi-objective automatic analysis of lung ultrasound data from COVID-19 patients by means of deep learning and decision trees
por: Custode, Leonardo Lucio, et al.
Publicado: (2023) -
Benchmark methodological approach for the application of artificial intelligence to lung ultrasound data from COVID-19 patients: From frame to prognostic-level
por: Khan, Umair, et al.
Publicado: (2023) -
State of the Art in Lung Ultrasound, Shifting from Qualitative to Quantitative Analyses
por: Mento, Federico, et al.
Publicado: (2022) -
Human‐to‐AI Interrater Agreement for Lung Ultrasound Scoring in COVID‐19 Patients
por: Fatima, Noreen, et al.
Publicado: (2022)