Cargando…

Epigenomic tensor predicts disease subtypes and reveals constrained tumor evolution

Understanding the epigenomic evolution and specificity of disease subtypes from complex patient data remains a major biomedical problem. We here present DeCET (decomposition and classification of epigenomic tensors), an integrative computational approach for simultaneously analyzing hierarchical het...

Descripción completa

Detalles Bibliográficos
Autores principales: Leistico, Jacob R., Saini, Priyanka, Futtner, Christopher R., Hejna, Miroslav, Omura, Yasuhiro, Soni, Pritin N., Sandlesh, Poorva, Milad, Magdy, Wei, Jian-Jun, Bulun, Serdar, Parker, J. Brandon, Barish, Grant D., Song, Jun S., Chakravarti, Debabrata
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8111960/
https://www.ncbi.nlm.nih.gov/pubmed/33789109
http://dx.doi.org/10.1016/j.celrep.2021.108927
_version_ 1783690600382464000
author Leistico, Jacob R.
Saini, Priyanka
Futtner, Christopher R.
Hejna, Miroslav
Omura, Yasuhiro
Soni, Pritin N.
Sandlesh, Poorva
Milad, Magdy
Wei, Jian-Jun
Bulun, Serdar
Parker, J. Brandon
Barish, Grant D.
Song, Jun S.
Chakravarti, Debabrata
author_facet Leistico, Jacob R.
Saini, Priyanka
Futtner, Christopher R.
Hejna, Miroslav
Omura, Yasuhiro
Soni, Pritin N.
Sandlesh, Poorva
Milad, Magdy
Wei, Jian-Jun
Bulun, Serdar
Parker, J. Brandon
Barish, Grant D.
Song, Jun S.
Chakravarti, Debabrata
author_sort Leistico, Jacob R.
collection PubMed
description Understanding the epigenomic evolution and specificity of disease subtypes from complex patient data remains a major biomedical problem. We here present DeCET (decomposition and classification of epigenomic tensors), an integrative computational approach for simultaneously analyzing hierarchical heterogeneous data, to identify robust epigenomic differences among tissue types, differentiation states, and disease subtypes. Applying DeCET to our own data from 21 uterine benign tumor (leiomyoma) patients identifies distinct epigenomic features discriminating normal myometrium and leiomyoma subtypes. Leiomyomas possess preponderant alterations in distal enhancers and long-range histone modifications confined to chromatin contact domains that constrain the evolution of pathological epigenomes. Moreover, we demonstrate the power and advantage of DeCET on multiple publicly available epigenomic datasets representing different cancers and cellular states. Epigenomic features extracted by DeCET can thus help improve our understanding of disease states, cellular development, and differentiation, thereby facilitating future therapeutic, diagnostic, and prognostic strategies.
format Online
Article
Text
id pubmed-8111960
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-81119602021-05-11 Epigenomic tensor predicts disease subtypes and reveals constrained tumor evolution Leistico, Jacob R. Saini, Priyanka Futtner, Christopher R. Hejna, Miroslav Omura, Yasuhiro Soni, Pritin N. Sandlesh, Poorva Milad, Magdy Wei, Jian-Jun Bulun, Serdar Parker, J. Brandon Barish, Grant D. Song, Jun S. Chakravarti, Debabrata Cell Rep Article Understanding the epigenomic evolution and specificity of disease subtypes from complex patient data remains a major biomedical problem. We here present DeCET (decomposition and classification of epigenomic tensors), an integrative computational approach for simultaneously analyzing hierarchical heterogeneous data, to identify robust epigenomic differences among tissue types, differentiation states, and disease subtypes. Applying DeCET to our own data from 21 uterine benign tumor (leiomyoma) patients identifies distinct epigenomic features discriminating normal myometrium and leiomyoma subtypes. Leiomyomas possess preponderant alterations in distal enhancers and long-range histone modifications confined to chromatin contact domains that constrain the evolution of pathological epigenomes. Moreover, we demonstrate the power and advantage of DeCET on multiple publicly available epigenomic datasets representing different cancers and cellular states. Epigenomic features extracted by DeCET can thus help improve our understanding of disease states, cellular development, and differentiation, thereby facilitating future therapeutic, diagnostic, and prognostic strategies. 2021-03-30 /pmc/articles/PMC8111960/ /pubmed/33789109 http://dx.doi.org/10.1016/j.celrep.2021.108927 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Leistico, Jacob R.
Saini, Priyanka
Futtner, Christopher R.
Hejna, Miroslav
Omura, Yasuhiro
Soni, Pritin N.
Sandlesh, Poorva
Milad, Magdy
Wei, Jian-Jun
Bulun, Serdar
Parker, J. Brandon
Barish, Grant D.
Song, Jun S.
Chakravarti, Debabrata
Epigenomic tensor predicts disease subtypes and reveals constrained tumor evolution
title Epigenomic tensor predicts disease subtypes and reveals constrained tumor evolution
title_full Epigenomic tensor predicts disease subtypes and reveals constrained tumor evolution
title_fullStr Epigenomic tensor predicts disease subtypes and reveals constrained tumor evolution
title_full_unstemmed Epigenomic tensor predicts disease subtypes and reveals constrained tumor evolution
title_short Epigenomic tensor predicts disease subtypes and reveals constrained tumor evolution
title_sort epigenomic tensor predicts disease subtypes and reveals constrained tumor evolution
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8111960/
https://www.ncbi.nlm.nih.gov/pubmed/33789109
http://dx.doi.org/10.1016/j.celrep.2021.108927
work_keys_str_mv AT leisticojacobr epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution
AT sainipriyanka epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution
AT futtnerchristopherr epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution
AT hejnamiroslav epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution
AT omurayasuhiro epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution
AT sonipritinn epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution
AT sandleshpoorva epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution
AT miladmagdy epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution
AT weijianjun epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution
AT bulunserdar epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution
AT parkerjbrandon epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution
AT barishgrantd epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution
AT songjuns epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution
AT chakravartidebabrata epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution