Cargando…
Epigenomic tensor predicts disease subtypes and reveals constrained tumor evolution
Understanding the epigenomic evolution and specificity of disease subtypes from complex patient data remains a major biomedical problem. We here present DeCET (decomposition and classification of epigenomic tensors), an integrative computational approach for simultaneously analyzing hierarchical het...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8111960/ https://www.ncbi.nlm.nih.gov/pubmed/33789109 http://dx.doi.org/10.1016/j.celrep.2021.108927 |
_version_ | 1783690600382464000 |
---|---|
author | Leistico, Jacob R. Saini, Priyanka Futtner, Christopher R. Hejna, Miroslav Omura, Yasuhiro Soni, Pritin N. Sandlesh, Poorva Milad, Magdy Wei, Jian-Jun Bulun, Serdar Parker, J. Brandon Barish, Grant D. Song, Jun S. Chakravarti, Debabrata |
author_facet | Leistico, Jacob R. Saini, Priyanka Futtner, Christopher R. Hejna, Miroslav Omura, Yasuhiro Soni, Pritin N. Sandlesh, Poorva Milad, Magdy Wei, Jian-Jun Bulun, Serdar Parker, J. Brandon Barish, Grant D. Song, Jun S. Chakravarti, Debabrata |
author_sort | Leistico, Jacob R. |
collection | PubMed |
description | Understanding the epigenomic evolution and specificity of disease subtypes from complex patient data remains a major biomedical problem. We here present DeCET (decomposition and classification of epigenomic tensors), an integrative computational approach for simultaneously analyzing hierarchical heterogeneous data, to identify robust epigenomic differences among tissue types, differentiation states, and disease subtypes. Applying DeCET to our own data from 21 uterine benign tumor (leiomyoma) patients identifies distinct epigenomic features discriminating normal myometrium and leiomyoma subtypes. Leiomyomas possess preponderant alterations in distal enhancers and long-range histone modifications confined to chromatin contact domains that constrain the evolution of pathological epigenomes. Moreover, we demonstrate the power and advantage of DeCET on multiple publicly available epigenomic datasets representing different cancers and cellular states. Epigenomic features extracted by DeCET can thus help improve our understanding of disease states, cellular development, and differentiation, thereby facilitating future therapeutic, diagnostic, and prognostic strategies. |
format | Online Article Text |
id | pubmed-8111960 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-81119602021-05-11 Epigenomic tensor predicts disease subtypes and reveals constrained tumor evolution Leistico, Jacob R. Saini, Priyanka Futtner, Christopher R. Hejna, Miroslav Omura, Yasuhiro Soni, Pritin N. Sandlesh, Poorva Milad, Magdy Wei, Jian-Jun Bulun, Serdar Parker, J. Brandon Barish, Grant D. Song, Jun S. Chakravarti, Debabrata Cell Rep Article Understanding the epigenomic evolution and specificity of disease subtypes from complex patient data remains a major biomedical problem. We here present DeCET (decomposition and classification of epigenomic tensors), an integrative computational approach for simultaneously analyzing hierarchical heterogeneous data, to identify robust epigenomic differences among tissue types, differentiation states, and disease subtypes. Applying DeCET to our own data from 21 uterine benign tumor (leiomyoma) patients identifies distinct epigenomic features discriminating normal myometrium and leiomyoma subtypes. Leiomyomas possess preponderant alterations in distal enhancers and long-range histone modifications confined to chromatin contact domains that constrain the evolution of pathological epigenomes. Moreover, we demonstrate the power and advantage of DeCET on multiple publicly available epigenomic datasets representing different cancers and cellular states. Epigenomic features extracted by DeCET can thus help improve our understanding of disease states, cellular development, and differentiation, thereby facilitating future therapeutic, diagnostic, and prognostic strategies. 2021-03-30 /pmc/articles/PMC8111960/ /pubmed/33789109 http://dx.doi.org/10.1016/j.celrep.2021.108927 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Leistico, Jacob R. Saini, Priyanka Futtner, Christopher R. Hejna, Miroslav Omura, Yasuhiro Soni, Pritin N. Sandlesh, Poorva Milad, Magdy Wei, Jian-Jun Bulun, Serdar Parker, J. Brandon Barish, Grant D. Song, Jun S. Chakravarti, Debabrata Epigenomic tensor predicts disease subtypes and reveals constrained tumor evolution |
title | Epigenomic tensor predicts disease subtypes and reveals constrained tumor evolution |
title_full | Epigenomic tensor predicts disease subtypes and reveals constrained tumor evolution |
title_fullStr | Epigenomic tensor predicts disease subtypes and reveals constrained tumor evolution |
title_full_unstemmed | Epigenomic tensor predicts disease subtypes and reveals constrained tumor evolution |
title_short | Epigenomic tensor predicts disease subtypes and reveals constrained tumor evolution |
title_sort | epigenomic tensor predicts disease subtypes and reveals constrained tumor evolution |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8111960/ https://www.ncbi.nlm.nih.gov/pubmed/33789109 http://dx.doi.org/10.1016/j.celrep.2021.108927 |
work_keys_str_mv | AT leisticojacobr epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution AT sainipriyanka epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution AT futtnerchristopherr epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution AT hejnamiroslav epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution AT omurayasuhiro epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution AT sonipritinn epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution AT sandleshpoorva epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution AT miladmagdy epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution AT weijianjun epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution AT bulunserdar epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution AT parkerjbrandon epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution AT barishgrantd epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution AT songjuns epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution AT chakravartidebabrata epigenomictensorpredictsdiseasesubtypesandrevealsconstrainedtumorevolution |