Cargando…
Exact transcript quantification over splice graphs
BACKGROUND: The probability of sequencing a set of RNA-seq reads can be directly modeled using the abundances of splice junctions in splice graphs instead of the abundances of a list of transcripts. We call this model graph quantification, which was first proposed by Bernard et al. (Bioinformatics 3...
Autores principales: | Ma, Cong, Zheng, Hongyu, Kingsford, Carl |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8112020/ https://www.ncbi.nlm.nih.gov/pubmed/33971903 http://dx.doi.org/10.1186/s13015-021-00184-7 |
Ejemplares similares
-
Deriving Ranges of Optimal Estimated Transcript Expression due to Nonidentifiability
por: Zheng, Hongyu, et al.
Publicado: (2022) -
Accurate assembly of transcripts through phase-preserving graph decomposition
por: Shao, Mingfu, et al.
Publicado: (2017) -
The effect of genome graph expressiveness on the discrepancy between genome graph distance and string set distance
por: Qiu, Yutong, et al.
Publicado: (2022) -
Graph rigidity reveals well-constrained regions of chromosome conformation embeddings
por: Duggal, Geet, et al.
Publicado: (2012) -
Using graph models to find transcription factor modules: the hitting set problem and an exact algorithm
por: Lu, Songjian, et al.
Publicado: (2013)