Cargando…
Using random forests to model 90-day hometime in people with stroke
BACKGROUND: Ninety-day hometime, the number of days a patient is living in the community in the first 90 after stroke, exhibits a non-normal bucket-shaped distribution, with lower and upper constraints making its analysis difficult. In this proof-of-concept study we evaluated the performance of rand...
Autores principales: | Holodinsky, Jessalyn K., Yu, Amy Y. X., Kapral, Moira K., Austin, Peter C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8112132/ https://www.ncbi.nlm.nih.gov/pubmed/33971827 http://dx.doi.org/10.1186/s12874-021-01289-8 |
Ejemplares similares
-
Comparing regression modeling strategies for predicting hometime
por: Holodinsky, Jessalyn K., et al.
Publicado: (2021) -
Gender inequality in source country modifies sex differences in stroke incidence in Canadian immigrants
por: Vyas, Manav V., et al.
Publicado: (2022) -
Testing the Usability of a Software for Geospatial and Transport Modeling in Acute Stroke Service Planning
por: Holodinsky, Jessalyn K., et al.
Publicado: (2019) -
Examining Hospital Variation on Multiple Indicators of Stroke Quality of Care
por: Austin, Peter C., et al.
Publicado: (2020) -
Hospital-based cohort study to determine the association between home-time and disability after stroke by age, sex, stroke type and study year in Canada
por: Yu, Amy Ying Xin, et al.
Publicado: (2019)