Cargando…
Benchmarking Datasets from Malaria Cytotoxic T-cell Epitopes Using Machine Learning Approach
BACKGROUND: Epitope prediction remains a major challenge in malaria due to the unique parasite biology, in addition to rapidly evolving parasite sequence variation in Plasmodium species. Although several models for epitope prediction exist, they are not useful in Plasmodium specific epitope developm...
Autor principal: | Adiga, Rama |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Avicenna Research Institute
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8112139/ https://www.ncbi.nlm.nih.gov/pubmed/34012524 http://dx.doi.org/10.18502/ajmb.v13i2.5527 |
Ejemplares similares
-
A benchmark dataset for machine learning in ecotoxicology
por: Schür, Christoph, et al.
Publicado: (2023) -
Benchmark datasets of immune receptor-epitope structural complexes
por: Mahajan, Swapnil, et al.
Publicado: (2019) -
Design of Cytotoxic T Cell Epitopes by Machine Learning of Human Degrons
por: Truex, Nicholas L., et al.
Publicado: (2023) -
Benchmark dataset for training machine learning models to predict the pathway involvement of metabolites
por: Huckvale, Erik D., et al.
Publicado: (2023) -
Benchmark Dataset for Training Machine Learning Models to Predict the Pathway Involvement of Metabolites
por: Huckvale, Erik D., et al.
Publicado: (2023)