Cargando…
Time-dependent probability distribution for number of infection in a stochastic SIS model: case study COVID-19
We derive the time-dependent probability distribution for the number of infected individuals at a given time in a stochastic Susceptible-Infected-Susceptible (SIS) epidemic model. The mean, variance, skewness, and kurtosis of the distribution are obtained as a function of time. We study the effect o...
Autor principal: | Otunuga, Olusegun Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pergamon Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8112579/ https://www.ncbi.nlm.nih.gov/pubmed/33994678 http://dx.doi.org/10.1016/j.chaos.2021.110983 |
Ejemplares similares
-
Closed-form probability distribution of number of infections at a given time in a stochastic SIS epidemic model
por: Otunuga, Olusegun Michael
Publicado: (2019) -
Stochastic Modeling and Forecasting of Covid-19 Deaths: Analysis for the Fifty States in the United States
por: Otunuga, Olusegun Michael, et al.
Publicado: (2022) -
Estimation of epidemiological parameters for COVID-19 cases using a stochastic SEIRS epidemic model with vital dynamics
por: Otunuga, Olusegun M.
Publicado: (2021) -
Qualitative analysis of a stochastic SEITR epidemic model with multiple stages of infection and treatment
por: Otunuga, Olusegun Michael, et al.
Publicado: (2019) -
Analysis of multi-strain infection of vaccinated and recovered population through epidemic model: Application to COVID-19
por: Otunuga, Olusegun Michael
Publicado: (2022)