Cargando…
Metabolic Evaluation of the Dietary Guidelines’ Ounce Equivalents of Protein Food Sources in Young Adults: A Randomized Controlled Trial
BACKGROUND: The Dietary Guidelines for Americans (DGAs) published an “ounce equivalents” recommendation to help consumers meet protein requirements with a variety of protein food sources. However, the metabolic equivalency of these varied protein food sources has not been established. OBJECTIVE: We...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8112772/ https://www.ncbi.nlm.nih.gov/pubmed/33693735 http://dx.doi.org/10.1093/jn/nxaa401 |
Sumario: | BACKGROUND: The Dietary Guidelines for Americans (DGAs) published an “ounce equivalents” recommendation to help consumers meet protein requirements with a variety of protein food sources. However, the metabolic equivalency of these varied protein food sources has not been established. OBJECTIVE: We have investigated the hypothesis that the anabolic responses to consumption of ounce equivalents of protein food sources would be directly related to the essential amino acid (EAA) content of the protein food source. METHODS: Following 3 d of dietary control, a total of 56 healthy young adults underwent an 8.5-h metabolic study using stable isotope tracer methodology. The changes from baseline following consumption of 1 of 7 different protein food sources were compared with the baseline value for that individual (n = 8 per group). RESULTS: Consumption of ounce equivalents of animal-based protein food sources (beef sirloin, pork loin, eggs) resulted in a greater gain in whole-body net protein balance above baseline than the ounce equivalents of plant-based protein food sources (tofu, kidney beans, peanut butter, mixed nuts; P < 0.01). The improvement in whole-body net protein balance was due to an increase in protein synthesis (P < 0.05) with all the animal protein sources, whereas the egg and pork groups also suppressed protein breakdown compared with the plant protein sources (P < 0.01). The magnitude of the whole-body net balance (anabolic) response was correlated with the EAA content of the protein food source (P < 0.001). CONCLUSION: The “ounce equivalents” of protein food sources as expressed in the DGAs are not metabolically equivalent in young healthy individuals. The magnitude of anabolic response to dietary proteins should be considered as the DGAs develop approaches to establish healthy eating patterns. |
---|