Cargando…
Diagnosis of Cervical Cancer based on Ensemble Deep Learning Network using Colposcopy Images
Traditional screening of cervical cancer type classification majorly depends on the pathologist's experience, which also has less accuracy. Colposcopy is a critical component of cervical cancer prevention. In conjunction with precancer screening and treatment, colposcopy has played an essential...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8112909/ https://www.ncbi.nlm.nih.gov/pubmed/33997017 http://dx.doi.org/10.1155/2021/5584004 |
_version_ | 1783690761243459584 |
---|---|
author | Chandran, Venkatesan Sumithra, M. G. Karthick, Alagar George, Tony Deivakani, M. Elakkiya, Balan Subramaniam, Umashankar Manoharan, S. |
author_facet | Chandran, Venkatesan Sumithra, M. G. Karthick, Alagar George, Tony Deivakani, M. Elakkiya, Balan Subramaniam, Umashankar Manoharan, S. |
author_sort | Chandran, Venkatesan |
collection | PubMed |
description | Traditional screening of cervical cancer type classification majorly depends on the pathologist's experience, which also has less accuracy. Colposcopy is a critical component of cervical cancer prevention. In conjunction with precancer screening and treatment, colposcopy has played an essential role in lowering the incidence and mortality from cervical cancer over the last 50 years. However, due to the increase in workload, vision screening causes misdiagnosis and low diagnostic efficiency. Medical image processing using the convolutional neural network (CNN) model shows its superiority for the classification of cervical cancer type in the field of deep learning. This paper proposes two deep learning CNN architectures to detect cervical cancer using the colposcopy images; one is the VGG19 (TL) model, and the other is CYENET. In the CNN architecture, VGG19 is adopted as a transfer learning for the studies. A new model is developed and termed as the Colposcopy Ensemble Network (CYENET) to classify cervical cancers from colposcopy images automatically. The accuracy, specificity, and sensitivity are estimated for the developed model. The classification accuracy for VGG19 was 73.3%. Relatively satisfied results are obtained for VGG19 (TL). From the kappa score of the VGG19 model, we can interpret that it comes under the category of moderate classification. The experimental results show that the proposed CYENET exhibited high sensitivity, specificity, and kappa scores of 92.4%, 96.2%, and 88%, respectively. The classification accuracy of the CYENET model is improved as 92.3%, which is 19% higher than the VGG19 (TL) model. |
format | Online Article Text |
id | pubmed-8112909 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-81129092021-05-13 Diagnosis of Cervical Cancer based on Ensemble Deep Learning Network using Colposcopy Images Chandran, Venkatesan Sumithra, M. G. Karthick, Alagar George, Tony Deivakani, M. Elakkiya, Balan Subramaniam, Umashankar Manoharan, S. Biomed Res Int Research Article Traditional screening of cervical cancer type classification majorly depends on the pathologist's experience, which also has less accuracy. Colposcopy is a critical component of cervical cancer prevention. In conjunction with precancer screening and treatment, colposcopy has played an essential role in lowering the incidence and mortality from cervical cancer over the last 50 years. However, due to the increase in workload, vision screening causes misdiagnosis and low diagnostic efficiency. Medical image processing using the convolutional neural network (CNN) model shows its superiority for the classification of cervical cancer type in the field of deep learning. This paper proposes two deep learning CNN architectures to detect cervical cancer using the colposcopy images; one is the VGG19 (TL) model, and the other is CYENET. In the CNN architecture, VGG19 is adopted as a transfer learning for the studies. A new model is developed and termed as the Colposcopy Ensemble Network (CYENET) to classify cervical cancers from colposcopy images automatically. The accuracy, specificity, and sensitivity are estimated for the developed model. The classification accuracy for VGG19 was 73.3%. Relatively satisfied results are obtained for VGG19 (TL). From the kappa score of the VGG19 model, we can interpret that it comes under the category of moderate classification. The experimental results show that the proposed CYENET exhibited high sensitivity, specificity, and kappa scores of 92.4%, 96.2%, and 88%, respectively. The classification accuracy of the CYENET model is improved as 92.3%, which is 19% higher than the VGG19 (TL) model. Hindawi 2021-05-04 /pmc/articles/PMC8112909/ /pubmed/33997017 http://dx.doi.org/10.1155/2021/5584004 Text en Copyright © 2021 Venkatesan Chandran et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Chandran, Venkatesan Sumithra, M. G. Karthick, Alagar George, Tony Deivakani, M. Elakkiya, Balan Subramaniam, Umashankar Manoharan, S. Diagnosis of Cervical Cancer based on Ensemble Deep Learning Network using Colposcopy Images |
title | Diagnosis of Cervical Cancer based on Ensemble Deep Learning Network using Colposcopy Images |
title_full | Diagnosis of Cervical Cancer based on Ensemble Deep Learning Network using Colposcopy Images |
title_fullStr | Diagnosis of Cervical Cancer based on Ensemble Deep Learning Network using Colposcopy Images |
title_full_unstemmed | Diagnosis of Cervical Cancer based on Ensemble Deep Learning Network using Colposcopy Images |
title_short | Diagnosis of Cervical Cancer based on Ensemble Deep Learning Network using Colposcopy Images |
title_sort | diagnosis of cervical cancer based on ensemble deep learning network using colposcopy images |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8112909/ https://www.ncbi.nlm.nih.gov/pubmed/33997017 http://dx.doi.org/10.1155/2021/5584004 |
work_keys_str_mv | AT chandranvenkatesan diagnosisofcervicalcancerbasedonensembledeeplearningnetworkusingcolposcopyimages AT sumithramg diagnosisofcervicalcancerbasedonensembledeeplearningnetworkusingcolposcopyimages AT karthickalagar diagnosisofcervicalcancerbasedonensembledeeplearningnetworkusingcolposcopyimages AT georgetony diagnosisofcervicalcancerbasedonensembledeeplearningnetworkusingcolposcopyimages AT deivakanim diagnosisofcervicalcancerbasedonensembledeeplearningnetworkusingcolposcopyimages AT elakkiyabalan diagnosisofcervicalcancerbasedonensembledeeplearningnetworkusingcolposcopyimages AT subramaniamumashankar diagnosisofcervicalcancerbasedonensembledeeplearningnetworkusingcolposcopyimages AT manoharans diagnosisofcervicalcancerbasedonensembledeeplearningnetworkusingcolposcopyimages |