Cargando…
The lipid peroxidation product EKODE exacerbates colonic inflammation and colon tumorigenesis
Oxidative stress is emerging as an important contributor to the pathogenesis of colorectal cancer (CRC), however, the molecular mechanisms by which the disturbed redox balance regulates CRC development remain undefined. Using a liquid chromatography–tandem mass spectrometry-based lipidomics, we foun...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113040/ https://www.ncbi.nlm.nih.gov/pubmed/33541845 http://dx.doi.org/10.1016/j.redox.2021.101880 |
_version_ | 1783690792273969152 |
---|---|
author | Lei, Lei Yang, Jun Zhang, Jianan Zhang, Guodong |
author_facet | Lei, Lei Yang, Jun Zhang, Jianan Zhang, Guodong |
author_sort | Lei, Lei |
collection | PubMed |
description | Oxidative stress is emerging as an important contributor to the pathogenesis of colorectal cancer (CRC), however, the molecular mechanisms by which the disturbed redox balance regulates CRC development remain undefined. Using a liquid chromatography–tandem mass spectrometry-based lipidomics, we found that epoxyketooctadecenoic acid (EKODE), which is a lipid peroxidation product, was among the most dramatically increased lipid molecules in the colon of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC mice. This is, at least in part, due to increased oxidative stress in colon tumors, as assessed by analyzing gene expression of oxidative markers in AOM/DSS-induced CRC mice and human CRC patients in the Cancer Genome Atlas (TCGA) database. Systemic, short-time treatment with low-dose EKODE increased the severity of DSS-induced colitis, caused intestinal barrier dysfunction and enhanced lipopolysaccharide (LPS)/bacterial translocation, and exacerbates the development of AOM/DSS-induced CRC in mice. Furthermore, treatment with EKODE, at nM doses, induced inflammatory responses via JNK-dependent mechanisms in both colon cancer cells and macrophage cells. Overall, these results demonstrate that the lipid peroxidation product EKODE is an important mediator of colonic inflammation and colon tumorigenesis, providing a novel mechanistic linkage between oxidative stress and CRC development. |
format | Online Article Text |
id | pubmed-8113040 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-81130402021-05-17 The lipid peroxidation product EKODE exacerbates colonic inflammation and colon tumorigenesis Lei, Lei Yang, Jun Zhang, Jianan Zhang, Guodong Redox Biol Research Paper Oxidative stress is emerging as an important contributor to the pathogenesis of colorectal cancer (CRC), however, the molecular mechanisms by which the disturbed redox balance regulates CRC development remain undefined. Using a liquid chromatography–tandem mass spectrometry-based lipidomics, we found that epoxyketooctadecenoic acid (EKODE), which is a lipid peroxidation product, was among the most dramatically increased lipid molecules in the colon of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC mice. This is, at least in part, due to increased oxidative stress in colon tumors, as assessed by analyzing gene expression of oxidative markers in AOM/DSS-induced CRC mice and human CRC patients in the Cancer Genome Atlas (TCGA) database. Systemic, short-time treatment with low-dose EKODE increased the severity of DSS-induced colitis, caused intestinal barrier dysfunction and enhanced lipopolysaccharide (LPS)/bacterial translocation, and exacerbates the development of AOM/DSS-induced CRC in mice. Furthermore, treatment with EKODE, at nM doses, induced inflammatory responses via JNK-dependent mechanisms in both colon cancer cells and macrophage cells. Overall, these results demonstrate that the lipid peroxidation product EKODE is an important mediator of colonic inflammation and colon tumorigenesis, providing a novel mechanistic linkage between oxidative stress and CRC development. Elsevier 2021-01-27 /pmc/articles/PMC8113040/ /pubmed/33541845 http://dx.doi.org/10.1016/j.redox.2021.101880 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Lei, Lei Yang, Jun Zhang, Jianan Zhang, Guodong The lipid peroxidation product EKODE exacerbates colonic inflammation and colon tumorigenesis |
title | The lipid peroxidation product EKODE exacerbates colonic inflammation and colon tumorigenesis |
title_full | The lipid peroxidation product EKODE exacerbates colonic inflammation and colon tumorigenesis |
title_fullStr | The lipid peroxidation product EKODE exacerbates colonic inflammation and colon tumorigenesis |
title_full_unstemmed | The lipid peroxidation product EKODE exacerbates colonic inflammation and colon tumorigenesis |
title_short | The lipid peroxidation product EKODE exacerbates colonic inflammation and colon tumorigenesis |
title_sort | lipid peroxidation product ekode exacerbates colonic inflammation and colon tumorigenesis |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113040/ https://www.ncbi.nlm.nih.gov/pubmed/33541845 http://dx.doi.org/10.1016/j.redox.2021.101880 |
work_keys_str_mv | AT leilei thelipidperoxidationproductekodeexacerbatescolonicinflammationandcolontumorigenesis AT yangjun thelipidperoxidationproductekodeexacerbatescolonicinflammationandcolontumorigenesis AT zhangjianan thelipidperoxidationproductekodeexacerbatescolonicinflammationandcolontumorigenesis AT zhangguodong thelipidperoxidationproductekodeexacerbatescolonicinflammationandcolontumorigenesis AT leilei lipidperoxidationproductekodeexacerbatescolonicinflammationandcolontumorigenesis AT yangjun lipidperoxidationproductekodeexacerbatescolonicinflammationandcolontumorigenesis AT zhangjianan lipidperoxidationproductekodeexacerbatescolonicinflammationandcolontumorigenesis AT zhangguodong lipidperoxidationproductekodeexacerbatescolonicinflammationandcolontumorigenesis |