Cargando…

Position paper of the EACVI and EANM on artificial intelligence applications in multimodality cardiovascular imaging using SPECT/CT, PET/CT, and cardiac CT

In daily clinical practice, clinicians integrate available data to ascertain the diagnostic and prognostic probability of a disease or clinical outcome for their patients. For patients with suspected or known cardiovascular disease, several anatomical and functional imaging techniques are commonly p...

Descripción completa

Detalles Bibliográficos
Autores principales: Slart, Riemer H. J. A., Williams, Michelle C., Juarez-Orozco, Luis Eduardo, Rischpler, Christoph, Dweck, Marc R., Glaudemans, Andor W. J. M., Gimelli, Alessia, Georgoulias, Panagiotis, Gheysens, Olivier, Gaemperli, Oliver, Habib, Gilbert, Hustinx, Roland, Cosyns, Bernard, Verberne, Hein J., Hyafil, Fabien, Erba, Paola A., Lubberink, Mark, Slomka, Piotr, Išgum, Ivana, Visvikis, Dimitris, Kolossváry, Márton, Saraste, Antti
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113178/
https://www.ncbi.nlm.nih.gov/pubmed/33864509
http://dx.doi.org/10.1007/s00259-021-05341-z
_version_ 1783690804324204544
author Slart, Riemer H. J. A.
Williams, Michelle C.
Juarez-Orozco, Luis Eduardo
Rischpler, Christoph
Dweck, Marc R.
Glaudemans, Andor W. J. M.
Gimelli, Alessia
Georgoulias, Panagiotis
Gheysens, Olivier
Gaemperli, Oliver
Habib, Gilbert
Hustinx, Roland
Cosyns, Bernard
Verberne, Hein J.
Hyafil, Fabien
Erba, Paola A.
Lubberink, Mark
Slomka, Piotr
Išgum, Ivana
Visvikis, Dimitris
Kolossváry, Márton
Saraste, Antti
author_facet Slart, Riemer H. J. A.
Williams, Michelle C.
Juarez-Orozco, Luis Eduardo
Rischpler, Christoph
Dweck, Marc R.
Glaudemans, Andor W. J. M.
Gimelli, Alessia
Georgoulias, Panagiotis
Gheysens, Olivier
Gaemperli, Oliver
Habib, Gilbert
Hustinx, Roland
Cosyns, Bernard
Verberne, Hein J.
Hyafil, Fabien
Erba, Paola A.
Lubberink, Mark
Slomka, Piotr
Išgum, Ivana
Visvikis, Dimitris
Kolossváry, Márton
Saraste, Antti
author_sort Slart, Riemer H. J. A.
collection PubMed
description In daily clinical practice, clinicians integrate available data to ascertain the diagnostic and prognostic probability of a disease or clinical outcome for their patients. For patients with suspected or known cardiovascular disease, several anatomical and functional imaging techniques are commonly performed to aid this endeavor, including coronary computed tomography angiography (CCTA) and nuclear cardiology imaging. Continuous improvement in positron emission tomography (PET), single-photon emission computed tomography (SPECT), and CT hardware and software has resulted in improved diagnostic performance and wide implementation of these imaging techniques in daily clinical practice. However, the human ability to interpret, quantify, and integrate these data sets is limited. The identification of novel markers and application of machine learning (ML) algorithms, including deep learning (DL) to cardiovascular imaging techniques will further improve diagnosis and prognostication for patients with cardiovascular diseases. The goal of this position paper of the European Association of Nuclear Medicine (EANM) and the European Association of Cardiovascular Imaging (EACVI) is to provide an overview of the general concepts behind modern machine learning-based artificial intelligence, highlights currently prefered methods, practices, and computational models, and proposes new strategies to support the clinical application of ML in the field of cardiovascular imaging using nuclear cardiology (hybrid) and CT techniques.
format Online
Article
Text
id pubmed-8113178
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-81131782021-05-13 Position paper of the EACVI and EANM on artificial intelligence applications in multimodality cardiovascular imaging using SPECT/CT, PET/CT, and cardiac CT Slart, Riemer H. J. A. Williams, Michelle C. Juarez-Orozco, Luis Eduardo Rischpler, Christoph Dweck, Marc R. Glaudemans, Andor W. J. M. Gimelli, Alessia Georgoulias, Panagiotis Gheysens, Olivier Gaemperli, Oliver Habib, Gilbert Hustinx, Roland Cosyns, Bernard Verberne, Hein J. Hyafil, Fabien Erba, Paola A. Lubberink, Mark Slomka, Piotr Išgum, Ivana Visvikis, Dimitris Kolossváry, Márton Saraste, Antti Eur J Nucl Med Mol Imaging Guidelines In daily clinical practice, clinicians integrate available data to ascertain the diagnostic and prognostic probability of a disease or clinical outcome for their patients. For patients with suspected or known cardiovascular disease, several anatomical and functional imaging techniques are commonly performed to aid this endeavor, including coronary computed tomography angiography (CCTA) and nuclear cardiology imaging. Continuous improvement in positron emission tomography (PET), single-photon emission computed tomography (SPECT), and CT hardware and software has resulted in improved diagnostic performance and wide implementation of these imaging techniques in daily clinical practice. However, the human ability to interpret, quantify, and integrate these data sets is limited. The identification of novel markers and application of machine learning (ML) algorithms, including deep learning (DL) to cardiovascular imaging techniques will further improve diagnosis and prognostication for patients with cardiovascular diseases. The goal of this position paper of the European Association of Nuclear Medicine (EANM) and the European Association of Cardiovascular Imaging (EACVI) is to provide an overview of the general concepts behind modern machine learning-based artificial intelligence, highlights currently prefered methods, practices, and computational models, and proposes new strategies to support the clinical application of ML in the field of cardiovascular imaging using nuclear cardiology (hybrid) and CT techniques. Springer Berlin Heidelberg 2021-04-17 2021 /pmc/articles/PMC8113178/ /pubmed/33864509 http://dx.doi.org/10.1007/s00259-021-05341-z Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Guidelines
Slart, Riemer H. J. A.
Williams, Michelle C.
Juarez-Orozco, Luis Eduardo
Rischpler, Christoph
Dweck, Marc R.
Glaudemans, Andor W. J. M.
Gimelli, Alessia
Georgoulias, Panagiotis
Gheysens, Olivier
Gaemperli, Oliver
Habib, Gilbert
Hustinx, Roland
Cosyns, Bernard
Verberne, Hein J.
Hyafil, Fabien
Erba, Paola A.
Lubberink, Mark
Slomka, Piotr
Išgum, Ivana
Visvikis, Dimitris
Kolossváry, Márton
Saraste, Antti
Position paper of the EACVI and EANM on artificial intelligence applications in multimodality cardiovascular imaging using SPECT/CT, PET/CT, and cardiac CT
title Position paper of the EACVI and EANM on artificial intelligence applications in multimodality cardiovascular imaging using SPECT/CT, PET/CT, and cardiac CT
title_full Position paper of the EACVI and EANM on artificial intelligence applications in multimodality cardiovascular imaging using SPECT/CT, PET/CT, and cardiac CT
title_fullStr Position paper of the EACVI and EANM on artificial intelligence applications in multimodality cardiovascular imaging using SPECT/CT, PET/CT, and cardiac CT
title_full_unstemmed Position paper of the EACVI and EANM on artificial intelligence applications in multimodality cardiovascular imaging using SPECT/CT, PET/CT, and cardiac CT
title_short Position paper of the EACVI and EANM on artificial intelligence applications in multimodality cardiovascular imaging using SPECT/CT, PET/CT, and cardiac CT
title_sort position paper of the eacvi and eanm on artificial intelligence applications in multimodality cardiovascular imaging using spect/ct, pet/ct, and cardiac ct
topic Guidelines
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113178/
https://www.ncbi.nlm.nih.gov/pubmed/33864509
http://dx.doi.org/10.1007/s00259-021-05341-z
work_keys_str_mv AT slartriemerhja positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT williamsmichellec positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT juarezorozcoluiseduardo positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT rischplerchristoph positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT dweckmarcr positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT glaudemansandorwjm positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT gimellialessia positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT georgouliaspanagiotis positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT gheysensolivier positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT gaemperlioliver positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT habibgilbert positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT hustinxroland positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT cosynsbernard positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT verberneheinj positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT hyafilfabien positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT erbapaolaa positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT lubberinkmark positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT slomkapiotr positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT isgumivana positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT visvikisdimitris positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT kolossvarymarton positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct
AT sarasteantti positionpaperoftheeacviandeanmonartificialintelligenceapplicationsinmultimodalitycardiovascularimagingusingspectctpetctandcardiacct