Cargando…

A diagnostic strategy for Parkinsonian syndromes using quantitative indices of DAT SPECT and MIBG scintigraphy: an investigation using the classification and regression tree analysis

PURPOSE: We aimed to evaluate the diagnostic performances of quantitative indices obtained from dopamine transporter (DAT) single-photon emission computed tomography (SPECT) and (123)I-metaiodobenzylguanidine (MIBG) scintigraphy for Parkinsonian syndromes (PS) using the classification and regression...

Descripción completa

Detalles Bibliográficos
Autores principales: Iwabuchi, Yu, Kameyama, Masashi, Matsusaka, Yohji, Narimatsu, Hidetoshi, Hashimoto, Masahiro, Seki, Morinobu, Ito, Daisuke, Tabuchi, Hajime, Yamada, Yoshitake, Jinzaki, Masahiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113194/
https://www.ncbi.nlm.nih.gov/pubmed/33392714
http://dx.doi.org/10.1007/s00259-020-05168-0
_version_ 1783690807787651072
author Iwabuchi, Yu
Kameyama, Masashi
Matsusaka, Yohji
Narimatsu, Hidetoshi
Hashimoto, Masahiro
Seki, Morinobu
Ito, Daisuke
Tabuchi, Hajime
Yamada, Yoshitake
Jinzaki, Masahiro
author_facet Iwabuchi, Yu
Kameyama, Masashi
Matsusaka, Yohji
Narimatsu, Hidetoshi
Hashimoto, Masahiro
Seki, Morinobu
Ito, Daisuke
Tabuchi, Hajime
Yamada, Yoshitake
Jinzaki, Masahiro
author_sort Iwabuchi, Yu
collection PubMed
description PURPOSE: We aimed to evaluate the diagnostic performances of quantitative indices obtained from dopamine transporter (DAT) single-photon emission computed tomography (SPECT) and (123)I-metaiodobenzylguanidine (MIBG) scintigraphy for Parkinsonian syndromes (PS) using the classification and regression tree (CART) analysis. METHODS: We retrospectively enrolled 216 patients with or without PS, including 80 without PS (NPS) and 136 with PS [90 Parkinson’s disease (PD), 21 dementia with Lewy bodies (DLB), 16 progressive supranuclear palsy (PSP), and 9 multiple system atrophy (MSA). The striatal binding ratio (SBR), putamen-to-caudate ratio (PCR), and asymmetry index (AI) were calculated using DAT SPECT. The heart-to-mediastinum uptake ratio (H/M) based on the early (H/M [Early]) and delayed (H/M [Delay]) images and cardiac washout rate (WR) were calculated from MIBG scintigraphy. The CART analysis was used to establish a diagnostic decision tree model for differentiating PS based on these quantitative indices. RESULTS: The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 87.5, 96.3, 93.3, 92.9, and 93.1 for NPS; 91.1, 78.6, 75.2, 92.5, and 83.8 for PD; 57.1, 95.9, 60.0, 95.4, and 92.1 for DLB; and 50.0, 98.0, 66.7, 96.1, and 94.4 for PSP, respectively. The PCR, WR, H/M (Delay), and SBR indices played important roles in the optimal decision tree model, and their feature importance was 0.61, 0.22, 0.11, and 0.05, respectively. CONCLUSION: The quantitative indices showed high diagnostic performances in differentiating NPS, PD, DLB, and PSP, but not MSA. Our findings provide useful guidance on how to apply these quantitative indices in clinical practice.
format Online
Article
Text
id pubmed-8113194
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-81131942021-05-13 A diagnostic strategy for Parkinsonian syndromes using quantitative indices of DAT SPECT and MIBG scintigraphy: an investigation using the classification and regression tree analysis Iwabuchi, Yu Kameyama, Masashi Matsusaka, Yohji Narimatsu, Hidetoshi Hashimoto, Masahiro Seki, Morinobu Ito, Daisuke Tabuchi, Hajime Yamada, Yoshitake Jinzaki, Masahiro Eur J Nucl Med Mol Imaging Original Article PURPOSE: We aimed to evaluate the diagnostic performances of quantitative indices obtained from dopamine transporter (DAT) single-photon emission computed tomography (SPECT) and (123)I-metaiodobenzylguanidine (MIBG) scintigraphy for Parkinsonian syndromes (PS) using the classification and regression tree (CART) analysis. METHODS: We retrospectively enrolled 216 patients with or without PS, including 80 without PS (NPS) and 136 with PS [90 Parkinson’s disease (PD), 21 dementia with Lewy bodies (DLB), 16 progressive supranuclear palsy (PSP), and 9 multiple system atrophy (MSA). The striatal binding ratio (SBR), putamen-to-caudate ratio (PCR), and asymmetry index (AI) were calculated using DAT SPECT. The heart-to-mediastinum uptake ratio (H/M) based on the early (H/M [Early]) and delayed (H/M [Delay]) images and cardiac washout rate (WR) were calculated from MIBG scintigraphy. The CART analysis was used to establish a diagnostic decision tree model for differentiating PS based on these quantitative indices. RESULTS: The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 87.5, 96.3, 93.3, 92.9, and 93.1 for NPS; 91.1, 78.6, 75.2, 92.5, and 83.8 for PD; 57.1, 95.9, 60.0, 95.4, and 92.1 for DLB; and 50.0, 98.0, 66.7, 96.1, and 94.4 for PSP, respectively. The PCR, WR, H/M (Delay), and SBR indices played important roles in the optimal decision tree model, and their feature importance was 0.61, 0.22, 0.11, and 0.05, respectively. CONCLUSION: The quantitative indices showed high diagnostic performances in differentiating NPS, PD, DLB, and PSP, but not MSA. Our findings provide useful guidance on how to apply these quantitative indices in clinical practice. Springer Berlin Heidelberg 2021-01-03 2021 /pmc/articles/PMC8113194/ /pubmed/33392714 http://dx.doi.org/10.1007/s00259-020-05168-0 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Original Article
Iwabuchi, Yu
Kameyama, Masashi
Matsusaka, Yohji
Narimatsu, Hidetoshi
Hashimoto, Masahiro
Seki, Morinobu
Ito, Daisuke
Tabuchi, Hajime
Yamada, Yoshitake
Jinzaki, Masahiro
A diagnostic strategy for Parkinsonian syndromes using quantitative indices of DAT SPECT and MIBG scintigraphy: an investigation using the classification and regression tree analysis
title A diagnostic strategy for Parkinsonian syndromes using quantitative indices of DAT SPECT and MIBG scintigraphy: an investigation using the classification and regression tree analysis
title_full A diagnostic strategy for Parkinsonian syndromes using quantitative indices of DAT SPECT and MIBG scintigraphy: an investigation using the classification and regression tree analysis
title_fullStr A diagnostic strategy for Parkinsonian syndromes using quantitative indices of DAT SPECT and MIBG scintigraphy: an investigation using the classification and regression tree analysis
title_full_unstemmed A diagnostic strategy for Parkinsonian syndromes using quantitative indices of DAT SPECT and MIBG scintigraphy: an investigation using the classification and regression tree analysis
title_short A diagnostic strategy for Parkinsonian syndromes using quantitative indices of DAT SPECT and MIBG scintigraphy: an investigation using the classification and regression tree analysis
title_sort diagnostic strategy for parkinsonian syndromes using quantitative indices of dat spect and mibg scintigraphy: an investigation using the classification and regression tree analysis
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113194/
https://www.ncbi.nlm.nih.gov/pubmed/33392714
http://dx.doi.org/10.1007/s00259-020-05168-0
work_keys_str_mv AT iwabuchiyu adiagnosticstrategyforparkinsoniansyndromesusingquantitativeindicesofdatspectandmibgscintigraphyaninvestigationusingtheclassificationandregressiontreeanalysis
AT kameyamamasashi adiagnosticstrategyforparkinsoniansyndromesusingquantitativeindicesofdatspectandmibgscintigraphyaninvestigationusingtheclassificationandregressiontreeanalysis
AT matsusakayohji adiagnosticstrategyforparkinsoniansyndromesusingquantitativeindicesofdatspectandmibgscintigraphyaninvestigationusingtheclassificationandregressiontreeanalysis
AT narimatsuhidetoshi adiagnosticstrategyforparkinsoniansyndromesusingquantitativeindicesofdatspectandmibgscintigraphyaninvestigationusingtheclassificationandregressiontreeanalysis
AT hashimotomasahiro adiagnosticstrategyforparkinsoniansyndromesusingquantitativeindicesofdatspectandmibgscintigraphyaninvestigationusingtheclassificationandregressiontreeanalysis
AT sekimorinobu adiagnosticstrategyforparkinsoniansyndromesusingquantitativeindicesofdatspectandmibgscintigraphyaninvestigationusingtheclassificationandregressiontreeanalysis
AT itodaisuke adiagnosticstrategyforparkinsoniansyndromesusingquantitativeindicesofdatspectandmibgscintigraphyaninvestigationusingtheclassificationandregressiontreeanalysis
AT tabuchihajime adiagnosticstrategyforparkinsoniansyndromesusingquantitativeindicesofdatspectandmibgscintigraphyaninvestigationusingtheclassificationandregressiontreeanalysis
AT yamadayoshitake adiagnosticstrategyforparkinsoniansyndromesusingquantitativeindicesofdatspectandmibgscintigraphyaninvestigationusingtheclassificationandregressiontreeanalysis
AT jinzakimasahiro adiagnosticstrategyforparkinsoniansyndromesusingquantitativeindicesofdatspectandmibgscintigraphyaninvestigationusingtheclassificationandregressiontreeanalysis
AT iwabuchiyu diagnosticstrategyforparkinsoniansyndromesusingquantitativeindicesofdatspectandmibgscintigraphyaninvestigationusingtheclassificationandregressiontreeanalysis
AT kameyamamasashi diagnosticstrategyforparkinsoniansyndromesusingquantitativeindicesofdatspectandmibgscintigraphyaninvestigationusingtheclassificationandregressiontreeanalysis
AT matsusakayohji diagnosticstrategyforparkinsoniansyndromesusingquantitativeindicesofdatspectandmibgscintigraphyaninvestigationusingtheclassificationandregressiontreeanalysis
AT narimatsuhidetoshi diagnosticstrategyforparkinsoniansyndromesusingquantitativeindicesofdatspectandmibgscintigraphyaninvestigationusingtheclassificationandregressiontreeanalysis
AT hashimotomasahiro diagnosticstrategyforparkinsoniansyndromesusingquantitativeindicesofdatspectandmibgscintigraphyaninvestigationusingtheclassificationandregressiontreeanalysis
AT sekimorinobu diagnosticstrategyforparkinsoniansyndromesusingquantitativeindicesofdatspectandmibgscintigraphyaninvestigationusingtheclassificationandregressiontreeanalysis
AT itodaisuke diagnosticstrategyforparkinsoniansyndromesusingquantitativeindicesofdatspectandmibgscintigraphyaninvestigationusingtheclassificationandregressiontreeanalysis
AT tabuchihajime diagnosticstrategyforparkinsoniansyndromesusingquantitativeindicesofdatspectandmibgscintigraphyaninvestigationusingtheclassificationandregressiontreeanalysis
AT yamadayoshitake diagnosticstrategyforparkinsoniansyndromesusingquantitativeindicesofdatspectandmibgscintigraphyaninvestigationusingtheclassificationandregressiontreeanalysis
AT jinzakimasahiro diagnosticstrategyforparkinsoniansyndromesusingquantitativeindicesofdatspectandmibgscintigraphyaninvestigationusingtheclassificationandregressiontreeanalysis