Cargando…
Machine learning based on clinico-biological features integrated (18)F-FDG PET/CT radiomics for distinguishing squamous cell carcinoma from adenocarcinoma of lung
PURPOSE: To develop and validate a clinico-biological features and (18)F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) radiomic-based nomogram via machine learning for the pretherapy prediction of discriminating between adenocarcinoma (ADC) and squamous cell carc...
Autores principales: | Ren, Caiyue, Zhang, Jianping, Qi, Ming, Zhang, Jiangang, Zhang, Yingjian, Song, Shaoli, Sun, Yun, Cheng, Jingyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113203/ https://www.ncbi.nlm.nih.gov/pubmed/33057772 http://dx.doi.org/10.1007/s00259-020-05065-6 |
Ejemplares similares
-
Clinico-biological-radiomics (CBR) based machine learning for improving the diagnostic accuracy of FDG-PET false-positive lymph nodes in lung cancer
por: Ren, Caiyue, et al.
Publicado: (2023) -
Classification of solid pulmonary nodules using a machine-learning nomogram based on (18)F-FDG PET/CT radiomics integrated clinicobiological features
por: Ren, Caiyue, et al.
Publicado: (2022) -
Optimal (18)F-FDG PET/CT radiomics model development for predicting EGFR mutation status and prognosis in lung adenocarcinoma: a multicentric study
por: Zuo, Yan, et al.
Publicado: (2023) -
Predicting EGFR mutation subtypes in lung adenocarcinoma using (18)F-FDG PET/CT radiomic features
por: Liu, Qiufang, et al.
Publicado: (2020) -
Radiomic assessment of oesophageal adenocarcinoma: a critical review of 18F-FDG PET/CT, PET/MRI and CT
por: O’Shea, Robert J., et al.
Publicado: (2022)