Cargando…
Post-reconstruction enhancement of [(18)F]FDG PET images with a convolutional neural network
BACKGROUND: The aim of the study was to develop and test an artificial intelligence (AI)-based method to improve the quality of [(18)F]fluorodeoxyglucose (FDG) positron emission tomography (PET) images. METHODS: A convolutional neural network (CNN) was trained by using pairs of excellent (acquisitio...
Autores principales: | Ly, John, Minarik, David, Jögi, Jonas, Wollmer, Per, Trägårdh, Elin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113431/ https://www.ncbi.nlm.nih.gov/pubmed/33974171 http://dx.doi.org/10.1186/s13550-021-00788-5 |
Ejemplares similares
-
The use of a proposed updated EARL harmonization of (18)F-FDG PET-CT in patients with lymphoma yields significant differences in Deauville score compared with current EARL recommendations
por: Ly, John, et al.
Publicado: (2019) -
Dose-reduced [(18)F]PSMA-1007 PET is feasible for functional imaging of the renal cortex
por: Valind, Kristian, et al.
Publicado: (2021) -
[(18)F]PSMA-1007 PET is comparable to [(99m)Tc]Tc-DMSA SPECT for renal cortical imaging
por: Valind, Kristian, et al.
Publicado: (2023) -
[(18)F]PSMA‐1007 renal uptake parameters: Reproducibility and relationship to estimated glomerular filtration rate
por: Valind, Kristian, et al.
Publicado: (2022) -
Optimization of [(18)F]PSMA-1007 PET-CT using regularized reconstruction in patients with prostate cancer
por: Trägårdh, Elin, et al.
Publicado: (2020)