Cargando…

The genomic loci of specific human tRNA genes exhibit ageing-related DNA hypermethylation

The epigenome has been shown to deteriorate with age, potentially impacting on ageing-related disease. tRNA, while arising from only ˜46 kb (<0.002% genome), is the second most abundant cellular transcript. tRNAs also control metabolic processes known to affect ageing, through core translational...

Descripción completa

Detalles Bibliográficos
Autores principales: Acton, Richard J., Yuan, Wei, Gao, Fei, Xia, Yudong, Bourne, Emma, Wozniak, Eva, Bell, Jordana, Lillycrop, Karen, Wang, Jun, Dennison, Elaine, Harvey, Nicholas C., Mein, Charles A., Spector, Tim D., Hysi, Pirro G., Cooper, Cyrus, Bell, Christopher G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113476/
https://www.ncbi.nlm.nih.gov/pubmed/33976121
http://dx.doi.org/10.1038/s41467-021-22639-6
Descripción
Sumario:The epigenome has been shown to deteriorate with age, potentially impacting on ageing-related disease. tRNA, while arising from only ˜46 kb (<0.002% genome), is the second most abundant cellular transcript. tRNAs also control metabolic processes known to affect ageing, through core translational and additional regulatory roles. Here, we interrogate the DNA methylation state of the genomic loci of human tRNA. We identify a genomic enrichment for age-related DNA hypermethylation at tRNA loci. Analysis in 4,350 MeDIP-seq peripheral-blood DNA methylomes (16–82 years), identifies 44 and 21 hypermethylating specific tRNAs at study-and genome-wide significance, respectively, contrasting with none hypomethylating. Validation and replication (450k array and independent targeted Bisuphite-sequencing) supported the hypermethylation of this functional unit. Tissue-specificity is a significant driver, although the strongest consistent signals, also independent of major cell-type change, occur in tRNA-iMet-CAT-1-4 and tRNA-Ser-AGA-2-6. This study presents a comprehensive evaluation of the genomic DNA methylation state of human tRNA genes and reveals a discreet hypermethylation with advancing age.