Cargando…
Neural network aided approximation and parameter inference of non-Markovian models of gene expression
Non-Markovian models of stochastic biochemical kinetics often incorporate explicit time delays to effectively model large numbers of intermediate biochemical processes. Analysis and simulation of these models, as well as the inference of their parameters from data, are fraught with difficulties beca...
Autores principales: | Jiang, Qingchao, Fu, Xiaoming, Yan, Shifu, Li, Runlai, Du, Wenli, Cao, Zhixing, Qian, Feng, Grima, Ramon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113478/ https://www.ncbi.nlm.nih.gov/pubmed/33976195 http://dx.doi.org/10.1038/s41467-021-22919-1 |
Ejemplares similares
-
Linear mapping approximation of gene regulatory networks with stochastic dynamics
por: Cao, Zhixing, et al.
Publicado: (2018) -
Quantifying how post-transcriptional noise and gene copy number variation bias transcriptional parameter inference from mRNA distributions
por: Fu, Xiaoming, et al.
Publicado: (2022) -
Approximating solutions of the Chemical Master equation using neural networks
por: Sukys, Augustinas, et al.
Publicado: (2022) -
Accuracy of parameter estimation for auto-regulatory transcriptional feedback loops from noisy data
por: Cao, Zhixing, et al.
Publicado: (2019) -
Cell size distribution of lineage data: analytic results and parameter inference
por: Jia, Chen, et al.
Publicado: (2021)