Cargando…
Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms
Patients with rare conditions such as cardiac amyloidosis (CA) are difficult to identify, given the similarity of disease manifestations to more prevalent disorders. The deployment of approved therapies for CA has been limited by delayed diagnosis of this disease. Artificial intelligence (AI) could...
Autores principales: | Goto, Shinichi, Mahara, Keitaro, Beussink-Nelson, Lauren, Ikura, Hidehiko, Katsumata, Yoshinori, Endo, Jin, Gaggin, Hanna K., Shah, Sanjiv J., Itabashi, Yuji, MacRae, Calum A., Deo, Rahul C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113484/ https://www.ncbi.nlm.nih.gov/pubmed/33976142 http://dx.doi.org/10.1038/s41467-021-22877-8 |
Ejemplares similares
-
Multinational Federated Learning Approach to Train ECG and Echocardiogram Models for Hypertrophic Cardiomyopathy Detection
por: Goto, Shinichi, et al.
Publicado: (2022) -
Importance of external validation and subgroup analysis of artificial intelligence in the detection of low ejection fraction from electrocardiograms
por: Yagi, Ryuichiro, et al.
Publicado: (2022) -
Fully Automated Echocardiogram Interpretation in Clinical Practice: Feasibility and Diagnostic Accuracy
por: Zhang, Jeffrey, et al.
Publicado: (2018) -
Real-Time Estimation of Anaerobic Threshold during Exercise Using Electrocardiogram in Heart Failure Patients
por: Ryuzaki, Toshinobu, et al.
Publicado: (2023) -
Feasibility of the deep learning method for estimating the ventilatory threshold with electrocardiography data
por: Miura, Kotaro, et al.
Publicado: (2020)