Cargando…
Power of data in quantum machine learning
The use of quantum computing for machine learning is among the most exciting prospective applications of quantum technologies. However, machine learning tasks where data is provided can be considerably different than commonly studied computational tasks. In this work, we show that some problems that...
Autores principales: | Huang, Hsin-Yuan, Broughton, Michael, Mohseni, Masoud, Babbush, Ryan, Boixo, Sergio, Neven, Hartmut, McClean, Jarrod R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113501/ https://www.ncbi.nlm.nih.gov/pubmed/33976136 http://dx.doi.org/10.1038/s41467-021-22539-9 |
Ejemplares similares
-
Barren plateaus in quantum neural network training landscapes
por: McClean, Jarrod R., et al.
Publicado: (2018) -
Decoding quantum errors with subspace expansions
por: McClean, Jarrod R., et al.
Publicado: (2020) -
Computational multiqubit tunnelling in programmable quantum annealers
por: Boixo, Sergio, et al.
Publicado: (2016) -
Systematic Dimensionality Reduction for Quantum Walks: Optimal Spatial Search and Transport on Non-Regular Graphs
por: Novo, Leonardo, et al.
Publicado: (2015) -
Adiabatic Quantum Simulation of Quantum Chemistry
por: Babbush, Ryan, et al.
Publicado: (2014)