Cargando…
QUBO formulations for training machine learning models
Training machine learning models on classical computers is usually a time and compute intensive process. With Moore’s law nearing its inevitable end and an ever-increasing demand for large-scale data analysis using machine learning, we must leverage non-conventional computing paradigms like quantum...
Autores principales: | Date, Prasanna, Arthur, Davis, Pusey-Nazzaro, Lauren |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113552/ https://www.ncbi.nlm.nih.gov/pubmed/33976283 http://dx.doi.org/10.1038/s41598-021-89461-4 |
Ejemplares similares
-
Distance-based clustering using QUBO formulations
por: Matsumoto, Nasa, et al.
Publicado: (2022) -
A QUBO formulation for top-τ eigencentrality nodes
por: Akrobotu, Prosper D., et al.
Publicado: (2022) -
HUBO and QUBO models for prime factorization
por: Jun, Kyungtaek, et al.
Publicado: (2023) -
A QUBO Formulation of the Stereo Matching Problem for D-Wave Quantum Annealers
por: Cruz-Santos, William, et al.
Publicado: (2018) -
A QUBO Formulation of Minimum Multicut Problem Instances in Trees for D-Wave Quantum Annealers
por: Cruz-Santos, William, et al.
Publicado: (2019)