Cargando…
Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance
Resistance to ionizing radiation, a first-line therapy for many cancers, is a major clinical challenge. Personalized prediction of tumor radiosensitivity is not currently implemented clinically due to insufficient accuracy of existing machine learning classifiers. Despite the acknowledged role of tu...
Autores principales: | Lewis, Joshua E., Kemp, Melissa L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113601/ https://www.ncbi.nlm.nih.gov/pubmed/33976213 http://dx.doi.org/10.1038/s41467-021-22989-1 |
Ejemplares similares
-
Machine learning for multi-omics data integration in cancer
por: Cai, Zhaoxiang, et al.
Publicado: (2022) -
Integration strategies of multi-omics data for machine learning analysis
por: Picard, Milan, et al.
Publicado: (2021) -
Correction to: Multi-omic integration by machine learning (MIMaL)
Publicado: (2023) -
Integrated multi-omics and machine learning approach reveals lipid metabolic biomarkers and signaling in age-related meibomian gland dysfunction
por: Cai, Yuchen, et al.
Publicado: (2023) -
Machine learning combining multi-omics data and network algorithms identifies adrenocortical carcinoma prognostic biomarkers
por: Martin-Hernandez, Roberto, et al.
Publicado: (2023)