Cargando…

Iterative Exponential Growth of Oxygen-Linked Aromatic Polymers Driven by Nucleophilic Aromatic Substitution Reactions

This work presents the first transition metal-free synthesis of oxygen-linked aromatic polymers by integrating iterative exponential polymer growth (IEG) with nucleophilic aromatic substitution (S(N)Ar) reactions. Our approach applies methyl sulfones as the leaving groups, which eliminate the need f...

Descripción completa

Detalles Bibliográficos
Autores principales: Jaynes, Tyler J., Sharafi, Mona, Campbell, Joseph P., Bocanegra, Jessica, McKay, Kyle T., Little, Kassondra, Osadchey Brown, Reilly, Gray, Danielle L., Woods, Toby J., Li, Jianing, Schneebeli, Severin T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113702/
https://www.ncbi.nlm.nih.gov/pubmed/33996739
http://dx.doi.org/10.3389/fchem.2021.620017
_version_ 1783690918567608320
author Jaynes, Tyler J.
Sharafi, Mona
Campbell, Joseph P.
Bocanegra, Jessica
McKay, Kyle T.
Little, Kassondra
Osadchey Brown, Reilly
Gray, Danielle L.
Woods, Toby J.
Li, Jianing
Schneebeli, Severin T.
author_facet Jaynes, Tyler J.
Sharafi, Mona
Campbell, Joseph P.
Bocanegra, Jessica
McKay, Kyle T.
Little, Kassondra
Osadchey Brown, Reilly
Gray, Danielle L.
Woods, Toby J.
Li, Jianing
Schneebeli, Severin T.
author_sort Jaynes, Tyler J.
collection PubMed
description This work presents the first transition metal-free synthesis of oxygen-linked aromatic polymers by integrating iterative exponential polymer growth (IEG) with nucleophilic aromatic substitution (S(N)Ar) reactions. Our approach applies methyl sulfones as the leaving groups, which eliminate the need for a transition metal catalyst, while also providing flexibility in functionality and configuration of the building blocks used. As indicated by 1) (1)H-(1)H NOESY NMR spectroscopy, 2) single-crystal X-ray crystallography, and 3) density functional theory (DFT) calculations, the unimolecular polymers obtained are folded by nonclassical hydrogen bonds formed between the oxygens of the electron-rich aromatic rings and the positively polarized C–H bonds of the electron-poor pyrimidine functions. Our results not only introduce a transition metal-free synthetic methodology to access precision polymers but also demonstrate how interactions between relatively small, neutral aromatic units in the polymers can be utilized as new supramolecular interaction pairs to control the folding of precision macromolecules.
format Online
Article
Text
id pubmed-8113702
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-81137022021-05-13 Iterative Exponential Growth of Oxygen-Linked Aromatic Polymers Driven by Nucleophilic Aromatic Substitution Reactions Jaynes, Tyler J. Sharafi, Mona Campbell, Joseph P. Bocanegra, Jessica McKay, Kyle T. Little, Kassondra Osadchey Brown, Reilly Gray, Danielle L. Woods, Toby J. Li, Jianing Schneebeli, Severin T. Front Chem Chemistry This work presents the first transition metal-free synthesis of oxygen-linked aromatic polymers by integrating iterative exponential polymer growth (IEG) with nucleophilic aromatic substitution (S(N)Ar) reactions. Our approach applies methyl sulfones as the leaving groups, which eliminate the need for a transition metal catalyst, while also providing flexibility in functionality and configuration of the building blocks used. As indicated by 1) (1)H-(1)H NOESY NMR spectroscopy, 2) single-crystal X-ray crystallography, and 3) density functional theory (DFT) calculations, the unimolecular polymers obtained are folded by nonclassical hydrogen bonds formed between the oxygens of the electron-rich aromatic rings and the positively polarized C–H bonds of the electron-poor pyrimidine functions. Our results not only introduce a transition metal-free synthetic methodology to access precision polymers but also demonstrate how interactions between relatively small, neutral aromatic units in the polymers can be utilized as new supramolecular interaction pairs to control the folding of precision macromolecules. Frontiers Media S.A. 2021-04-28 /pmc/articles/PMC8113702/ /pubmed/33996739 http://dx.doi.org/10.3389/fchem.2021.620017 Text en Copyright © 2021 Jaynes, Sharafi, Campbell, Bocanegra, McKay, Little, Osadchey Brown, Gray, Woods, Li and Schneebeli. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Chemistry
Jaynes, Tyler J.
Sharafi, Mona
Campbell, Joseph P.
Bocanegra, Jessica
McKay, Kyle T.
Little, Kassondra
Osadchey Brown, Reilly
Gray, Danielle L.
Woods, Toby J.
Li, Jianing
Schneebeli, Severin T.
Iterative Exponential Growth of Oxygen-Linked Aromatic Polymers Driven by Nucleophilic Aromatic Substitution Reactions
title Iterative Exponential Growth of Oxygen-Linked Aromatic Polymers Driven by Nucleophilic Aromatic Substitution Reactions
title_full Iterative Exponential Growth of Oxygen-Linked Aromatic Polymers Driven by Nucleophilic Aromatic Substitution Reactions
title_fullStr Iterative Exponential Growth of Oxygen-Linked Aromatic Polymers Driven by Nucleophilic Aromatic Substitution Reactions
title_full_unstemmed Iterative Exponential Growth of Oxygen-Linked Aromatic Polymers Driven by Nucleophilic Aromatic Substitution Reactions
title_short Iterative Exponential Growth of Oxygen-Linked Aromatic Polymers Driven by Nucleophilic Aromatic Substitution Reactions
title_sort iterative exponential growth of oxygen-linked aromatic polymers driven by nucleophilic aromatic substitution reactions
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113702/
https://www.ncbi.nlm.nih.gov/pubmed/33996739
http://dx.doi.org/10.3389/fchem.2021.620017
work_keys_str_mv AT jaynestylerj iterativeexponentialgrowthofoxygenlinkedaromaticpolymersdrivenbynucleophilicaromaticsubstitutionreactions
AT sharafimona iterativeexponentialgrowthofoxygenlinkedaromaticpolymersdrivenbynucleophilicaromaticsubstitutionreactions
AT campbelljosephp iterativeexponentialgrowthofoxygenlinkedaromaticpolymersdrivenbynucleophilicaromaticsubstitutionreactions
AT bocanegrajessica iterativeexponentialgrowthofoxygenlinkedaromaticpolymersdrivenbynucleophilicaromaticsubstitutionreactions
AT mckaykylet iterativeexponentialgrowthofoxygenlinkedaromaticpolymersdrivenbynucleophilicaromaticsubstitutionreactions
AT littlekassondra iterativeexponentialgrowthofoxygenlinkedaromaticpolymersdrivenbynucleophilicaromaticsubstitutionreactions
AT osadcheybrownreilly iterativeexponentialgrowthofoxygenlinkedaromaticpolymersdrivenbynucleophilicaromaticsubstitutionreactions
AT graydaniellel iterativeexponentialgrowthofoxygenlinkedaromaticpolymersdrivenbynucleophilicaromaticsubstitutionreactions
AT woodstobyj iterativeexponentialgrowthofoxygenlinkedaromaticpolymersdrivenbynucleophilicaromaticsubstitutionreactions
AT lijianing iterativeexponentialgrowthofoxygenlinkedaromaticpolymersdrivenbynucleophilicaromaticsubstitutionreactions
AT schneebeliseverint iterativeexponentialgrowthofoxygenlinkedaromaticpolymersdrivenbynucleophilicaromaticsubstitutionreactions