Cargando…

A dynamic Dab2 keeps myosin VI stably on track

Myosins are actin-based motor proteins known to perform a variety of different mechanical tasks in cells including transporting cargo, generating tension, and linking the cytoskeleton and membrane. Myosins that function as transporters often form complexes with adaptor proteins and vesicular membran...

Descripción completa

Detalles Bibliográficos
Autores principales: Cirilo, Joseph A., Yengo, Christopher M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113857/
https://www.ncbi.nlm.nih.gov/pubmed/34237899
http://dx.doi.org/10.1016/j.jbc.2021.100640
Descripción
Sumario:Myosins are actin-based motor proteins known to perform a variety of different mechanical tasks in cells including transporting cargo, generating tension, and linking the cytoskeleton and membrane. Myosins that function as transporters often form complexes with adaptor proteins and vesicular membranes, making it unclear how they transport their cargo through the actin cytoskeletal network. Rai et al. now use single-molecule kinetics, FRET, and DNA origami scaffolds that mimic motor–adaptor complexes to reveal that the myosin VI-Dab2 complex, which is held together weakly and turns over rapidly, can facilitate processive transport without disruption of the cytoskeleton.