Cargando…
Deep learning detects and visualizes bleeding events in electronic health records
BACKGROUND: Bleeding is associated with a significantly increased morbidity and mortality. Bleeding events are often described in the unstructured text of electronic health records, which makes them difficult to identify by manual inspection. OBJECTIVES: To develop a deep learning model that detects...
Autores principales: | Pedersen, Jannik S., Laursen, Martin S., Rajeeth Savarimuthu, Thiusius, Hansen, Rasmus Søgaard, Alnor, Anne Bryde, Bjerre, Kristian Voss, Kjær, Ina Mathilde, Gils, Charlotte, Thorsen, Anne‐Sofie Faarvang, Andersen, Eline Sandvig, Nielsen, Cathrine Brødsgaard, Andersen, Lou‐Ann Christensen, Just, Søren Andreas, Vinholt, Pernille Just |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8114029/ https://www.ncbi.nlm.nih.gov/pubmed/34013150 http://dx.doi.org/10.1002/rth2.12505 |
Ejemplares similares
-
Neural networks for automatic scoring of arthritis disease activity on ultrasound images
por: Andersen, Jakob Kristian Holm, et al.
Publicado: (2019) -
Light transmission aggregometry using pre-coated microtiter plates and a Victor X5 plate reader
por: Vinholt, Pernille Just, et al.
Publicado: (2017) -
Falsely prolonged activated partial thromboplastin time – a pre- and post-analytical issue
por: Gils, Charlotte, et al.
Publicado: (2018) -
Escaping the catch 22 of lupus anticoagulant testing
por: Vinholt, Pernille Just, et al.
Publicado: (2020) -
A digital online platform for education and certification of diabetic retinopathy health care professionals in the Region of Southern Denmark
por: Andersen, Jakob Kristian Holm, et al.
Publicado: (2022)