Cargando…

MaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object Pose and Velocity Tracking

Tracking the 6D pose and velocity of objects represents a fundamental requirement for modern robotics manipulation tasks. This paper proposes a 6D object pose tracking algorithm, called MaskUKF, that combines deep object segmentation networks and depth information with a serial Unscented Kalman Filt...

Descripción completa

Detalles Bibliográficos
Autores principales: Piga, Nicola A., Bottarel, Fabrizio, Fantacci, Claudio, Vezzani, Giulia, Pattacini, Ugo, Natale, Lorenzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8114180/
https://www.ncbi.nlm.nih.gov/pubmed/33996920
http://dx.doi.org/10.3389/frobt.2021.594583
_version_ 1783691010210004992
author Piga, Nicola A.
Bottarel, Fabrizio
Fantacci, Claudio
Vezzani, Giulia
Pattacini, Ugo
Natale, Lorenzo
author_facet Piga, Nicola A.
Bottarel, Fabrizio
Fantacci, Claudio
Vezzani, Giulia
Pattacini, Ugo
Natale, Lorenzo
author_sort Piga, Nicola A.
collection PubMed
description Tracking the 6D pose and velocity of objects represents a fundamental requirement for modern robotics manipulation tasks. This paper proposes a 6D object pose tracking algorithm, called MaskUKF, that combines deep object segmentation networks and depth information with a serial Unscented Kalman Filter to track the pose and the velocity of an object in real-time. MaskUKF achieves and in most cases surpasses state-of-the-art performance on the YCB-Video pose estimation benchmark without the need for expensive ground truth pose annotations at training time. Closed loop control experiments on the iCub humanoid platform in simulation show that joint pose and velocity tracking helps achieving higher precision and reliability than with one-shot deep pose estimation networks. A video of the experiments is available as Supplementary Material.
format Online
Article
Text
id pubmed-8114180
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-81141802021-05-13 MaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object Pose and Velocity Tracking Piga, Nicola A. Bottarel, Fabrizio Fantacci, Claudio Vezzani, Giulia Pattacini, Ugo Natale, Lorenzo Front Robot AI Robotics and AI Tracking the 6D pose and velocity of objects represents a fundamental requirement for modern robotics manipulation tasks. This paper proposes a 6D object pose tracking algorithm, called MaskUKF, that combines deep object segmentation networks and depth information with a serial Unscented Kalman Filter to track the pose and the velocity of an object in real-time. MaskUKF achieves and in most cases surpasses state-of-the-art performance on the YCB-Video pose estimation benchmark without the need for expensive ground truth pose annotations at training time. Closed loop control experiments on the iCub humanoid platform in simulation show that joint pose and velocity tracking helps achieving higher precision and reliability than with one-shot deep pose estimation networks. A video of the experiments is available as Supplementary Material. Frontiers Media S.A. 2021-03-22 /pmc/articles/PMC8114180/ /pubmed/33996920 http://dx.doi.org/10.3389/frobt.2021.594583 Text en Copyright © 2021 Piga, Bottarel, Fantacci, Vezzani, Pattacini and Natale. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Robotics and AI
Piga, Nicola A.
Bottarel, Fabrizio
Fantacci, Claudio
Vezzani, Giulia
Pattacini, Ugo
Natale, Lorenzo
MaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object Pose and Velocity Tracking
title MaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object Pose and Velocity Tracking
title_full MaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object Pose and Velocity Tracking
title_fullStr MaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object Pose and Velocity Tracking
title_full_unstemmed MaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object Pose and Velocity Tracking
title_short MaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object Pose and Velocity Tracking
title_sort maskukf: an instance segmentation aided unscented kalman filter for 6d object pose and velocity tracking
topic Robotics and AI
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8114180/
https://www.ncbi.nlm.nih.gov/pubmed/33996920
http://dx.doi.org/10.3389/frobt.2021.594583
work_keys_str_mv AT piganicolaa maskukfaninstancesegmentationaidedunscentedkalmanfilterfor6dobjectposeandvelocitytracking
AT bottarelfabrizio maskukfaninstancesegmentationaidedunscentedkalmanfilterfor6dobjectposeandvelocitytracking
AT fantacciclaudio maskukfaninstancesegmentationaidedunscentedkalmanfilterfor6dobjectposeandvelocitytracking
AT vezzanigiulia maskukfaninstancesegmentationaidedunscentedkalmanfilterfor6dobjectposeandvelocitytracking
AT pattaciniugo maskukfaninstancesegmentationaidedunscentedkalmanfilterfor6dobjectposeandvelocitytracking
AT natalelorenzo maskukfaninstancesegmentationaidedunscentedkalmanfilterfor6dobjectposeandvelocitytracking