Cargando…
COVID19-CT-dataset: an open-access chest CT image repository of 1000+ patients with confirmed COVID-19 diagnosis
OBJECTIVES: The ongoing Coronavirus disease 2019 (COVID-19) pandemic has drastically impacted the global health and economy. Computed tomography (CT) is the prime imaging modality for diagnosis of lung infections in COVID-19 patients. Data-driven and Artificial intelligence (AI)-powered solutions fo...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8114670/ https://www.ncbi.nlm.nih.gov/pubmed/33980279 http://dx.doi.org/10.1186/s13104-021-05592-x |
Sumario: | OBJECTIVES: The ongoing Coronavirus disease 2019 (COVID-19) pandemic has drastically impacted the global health and economy. Computed tomography (CT) is the prime imaging modality for diagnosis of lung infections in COVID-19 patients. Data-driven and Artificial intelligence (AI)-powered solutions for automatic processing of CT images predominantly rely on large-scale, heterogeneous datasets. Owing to privacy and data availability issues, open-access and publicly available COVID-19 CT datasets are difficult to obtain, thus limiting the development of AI-enabled automatic diagnostic solutions. To tackle this problem, large CT image datasets encompassing diverse patterns of lung infections are in high demand. DATA DESCRIPTION: In the present study, we provide an open-source repository containing 1000+ CT images of COVID-19 lung infections established by a team of board-certified radiologists. CT images were acquired from two main general university hospitals in Mashhad, Iran from March 2020 until January 2021. COVID-19 infections were ratified with matching tests including Reverse transcription polymerase chain reaction (RT-PCR) and accompanying clinical symptoms. All data are 16-bit grayscale images composed of 512 × 512 pixels and are stored in DICOM standard. Patient privacy is preserved by removing all patient-specific information from image headers. Subsequently, all images corresponding to each patient are compressed and stored in RAR format. |
---|