Cargando…
An effective classification framework for brain-computer interface system design based on combining of fNIRS and EEG signals
BACKGROUND: The brain-computer interface (BCI) is a relatively new but highly promising special field that is actively used in basic neuroscience. BCI includes interfaces for human-computer communication based directly on neural activity concerning mental processes. Fundamental BCI components consis...
Autor principal: | Alhudhaif, Adi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8114820/ https://www.ncbi.nlm.nih.gov/pubmed/34013040 http://dx.doi.org/10.7717/peerj-cs.537 |
Ejemplares similares
-
Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces
por: Hong, Keum-Shik, et al.
Publicado: (2018) -
A novel multi-class imbalanced EEG signals classification based on the adaptive synthetic sampling (ADASYN) approach
por: Alhudhaif, Adi
Publicado: (2021) -
Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks
por: Buccino, Alessio Paolo, et al.
Publicado: (2016) -
OptEF-BCI: An Optimization-Based Hybrid EEG and fNIRS–Brain Computer Interface
por: Ali, Muhammad Umair, et al.
Publicado: (2023) -
fNIRS improves seizure detection in multimodal EEG-fNIRS recordings
por: Sirpal, Parikshat, et al.
Publicado: (2019)