Cargando…
In-network generalized trustworthy data collection for event detection in cyber-physical systems
Sensors in Cyber-Physical Systems (CPS) are typically used to collect various aspects of the region of interest and transmit the data towards upstream nodes for further processing. However, data collection in CPS is often unreliable due to severe resource constraints (e.g., bandwidth and energy), en...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8114821/ https://www.ncbi.nlm.nih.gov/pubmed/34013032 http://dx.doi.org/10.7717/peerj-cs.504 |
_version_ | 1783691124808876032 |
---|---|
author | Ur Rahman, Hafiz Wang, Guojun Alam Bhuiyan, Md Zakirul Chen, Jianer |
author_facet | Ur Rahman, Hafiz Wang, Guojun Alam Bhuiyan, Md Zakirul Chen, Jianer |
author_sort | Ur Rahman, Hafiz |
collection | PubMed |
description | Sensors in Cyber-Physical Systems (CPS) are typically used to collect various aspects of the region of interest and transmit the data towards upstream nodes for further processing. However, data collection in CPS is often unreliable due to severe resource constraints (e.g., bandwidth and energy), environmental impacts (e.g., equipment faults and noises), and security concerns. Besides, detecting an event through the aggregation in CPS can be intricate and untrustworthy if the sensor's data is not validated during data acquisition, before transmission, and before aggregation. This paper introduces In-network Generalized Trustworthy Data Collection (IGTDC) framework for event detection in CPS. This framework facilitates reliable data for aggregation at the edge of CPS. The main idea of IGTDC is to enable a sensor's module to examine locally whether the event's acquired data is trustworthy before transmitting towards the upstream nodes. It further validates whether the received data can be trusted or not before data aggregation at the sink node. Additionally, IGTDC helps to identify faulty sensors. For reliable event detection, we use collaborative IoT tactics, gate-level modeling with Verilog User Defined Primitive (UDP), and Programmable Logic Device (PLD) to ensure that the event's acquired data is reliable before transmitting towards the upstream nodes. We employ Gray code in gate-level modeling. It helps to ensure that the received data is reliable. Gray code also helps to distinguish a faulty sensor. Through simulation and extensive performance analysis, we demonstrate that the collected data in the IGTDC framework is reliable and can be used in the majority of CPS applications. |
format | Online Article Text |
id | pubmed-8114821 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-81148212021-05-18 In-network generalized trustworthy data collection for event detection in cyber-physical systems Ur Rahman, Hafiz Wang, Guojun Alam Bhuiyan, Md Zakirul Chen, Jianer PeerJ Comput Sci Computer Networks and Communications Sensors in Cyber-Physical Systems (CPS) are typically used to collect various aspects of the region of interest and transmit the data towards upstream nodes for further processing. However, data collection in CPS is often unreliable due to severe resource constraints (e.g., bandwidth and energy), environmental impacts (e.g., equipment faults and noises), and security concerns. Besides, detecting an event through the aggregation in CPS can be intricate and untrustworthy if the sensor's data is not validated during data acquisition, before transmission, and before aggregation. This paper introduces In-network Generalized Trustworthy Data Collection (IGTDC) framework for event detection in CPS. This framework facilitates reliable data for aggregation at the edge of CPS. The main idea of IGTDC is to enable a sensor's module to examine locally whether the event's acquired data is trustworthy before transmitting towards the upstream nodes. It further validates whether the received data can be trusted or not before data aggregation at the sink node. Additionally, IGTDC helps to identify faulty sensors. For reliable event detection, we use collaborative IoT tactics, gate-level modeling with Verilog User Defined Primitive (UDP), and Programmable Logic Device (PLD) to ensure that the event's acquired data is reliable before transmitting towards the upstream nodes. We employ Gray code in gate-level modeling. It helps to ensure that the received data is reliable. Gray code also helps to distinguish a faulty sensor. Through simulation and extensive performance analysis, we demonstrate that the collected data in the IGTDC framework is reliable and can be used in the majority of CPS applications. PeerJ Inc. 2021-05-04 /pmc/articles/PMC8114821/ /pubmed/34013032 http://dx.doi.org/10.7717/peerj-cs.504 Text en © 2021 Ur Rahman et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
spellingShingle | Computer Networks and Communications Ur Rahman, Hafiz Wang, Guojun Alam Bhuiyan, Md Zakirul Chen, Jianer In-network generalized trustworthy data collection for event detection in cyber-physical systems |
title | In-network generalized trustworthy data collection for event detection in cyber-physical systems |
title_full | In-network generalized trustworthy data collection for event detection in cyber-physical systems |
title_fullStr | In-network generalized trustworthy data collection for event detection in cyber-physical systems |
title_full_unstemmed | In-network generalized trustworthy data collection for event detection in cyber-physical systems |
title_short | In-network generalized trustworthy data collection for event detection in cyber-physical systems |
title_sort | in-network generalized trustworthy data collection for event detection in cyber-physical systems |
topic | Computer Networks and Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8114821/ https://www.ncbi.nlm.nih.gov/pubmed/34013032 http://dx.doi.org/10.7717/peerj-cs.504 |
work_keys_str_mv | AT urrahmanhafiz innetworkgeneralizedtrustworthydatacollectionforeventdetectionincyberphysicalsystems AT wangguojun innetworkgeneralizedtrustworthydatacollectionforeventdetectionincyberphysicalsystems AT alambhuiyanmdzakirul innetworkgeneralizedtrustworthydatacollectionforeventdetectionincyberphysicalsystems AT chenjianer innetworkgeneralizedtrustworthydatacollectionforeventdetectionincyberphysicalsystems |