Cargando…
Random forest-based prediction of stroke outcome
We research into the clinical, biochemical and neuroimaging factors associated with the outcome of stroke patients to generate a predictive model using machine learning techniques for prediction of mortality and morbidity 3-months after admission. The dataset consisted of patients with ischemic stro...
Autores principales: | Fernandez-Lozano, Carlos, Hervella, Pablo, Mato-Abad, Virginia, Rodríguez-Yáñez, Manuel, Suárez-Garaboa, Sonia, López-Dequidt, Iria, Estany-Gestal, Ana, Sobrino, Tomás, Campos, Francisco, Castillo, José, Rodríguez-Yáñez, Santiago, Iglesias-Rey, Ramón |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115135/ https://www.ncbi.nlm.nih.gov/pubmed/33980906 http://dx.doi.org/10.1038/s41598-021-89434-7 |
Ejemplares similares
-
Intra- and extra-hospital improvement in ischemic stroke patients: influence of reperfusion therapy and molecular mechanisms
por: Hervella, Pablo, et al.
Publicado: (2020) -
sTWEAK as Predictor of Stroke Recurrence in Ischemic Stroke Patients Treated With Reperfusion Therapies
por: Hervella, Pablo, et al.
Publicado: (2021) -
Temperature-Induced Changes in Reperfused Stroke: Inflammatory and Thrombolytic Biomarkers
por: Ávila-Gómez, Paulo, et al.
Publicado: (2020) -
The presence of leukoaraiosis enhances the association between sTWEAK and hemorrhagic transformation
por: da Silva‐Candal, Andrés, et al.
Publicado: (2020) -
Surrogate biomarkers of outcome for wake-up ischemic stroke
por: Hervella, Pablo, et al.
Publicado: (2022)