Cargando…
Metabolic modeling predicts specific gut bacteria as key determinants for Candida albicans colonization levels
Candida albicans is a leading cause of life-threatening hospital-acquired infections and can lead to Candidemia with sepsis-like symptoms and high mortality rates. We reconstructed a genome-scale C. albicans metabolic model to investigate bacterial-fungal metabolic interactions in the gut as determi...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115155/ https://www.ncbi.nlm.nih.gov/pubmed/33323978 http://dx.doi.org/10.1038/s41396-020-00848-z |
_version_ | 1783691182934589440 |
---|---|
author | Mirhakkak, Mohammad H. Schäuble, Sascha Klassert, Tilman E. Brunke, Sascha Brandt, Philipp Loos, Daniel Uribe, Ruben V. Senne de Oliveira Lino, Felipe Ni, Yueqiong Vylkova, Slavena Slevogt, Hortense Hube, Bernhard Weiss, Glen J. Sommer, Morten O. A. Panagiotou, Gianni |
author_facet | Mirhakkak, Mohammad H. Schäuble, Sascha Klassert, Tilman E. Brunke, Sascha Brandt, Philipp Loos, Daniel Uribe, Ruben V. Senne de Oliveira Lino, Felipe Ni, Yueqiong Vylkova, Slavena Slevogt, Hortense Hube, Bernhard Weiss, Glen J. Sommer, Morten O. A. Panagiotou, Gianni |
author_sort | Mirhakkak, Mohammad H. |
collection | PubMed |
description | Candida albicans is a leading cause of life-threatening hospital-acquired infections and can lead to Candidemia with sepsis-like symptoms and high mortality rates. We reconstructed a genome-scale C. albicans metabolic model to investigate bacterial-fungal metabolic interactions in the gut as determinants of fungal abundance. We optimized the predictive capacity of our model using wild type and mutant C. albicans growth data and used it for in silico metabolic interaction predictions. Our analysis of more than 900 paired fungal–bacterial metabolic models predicted key gut bacterial species modulating C. albicans colonization levels. Among the studied microbes, Alistipes putredinis was predicted to negatively affect C. albicans levels. We confirmed these findings by metagenomic sequencing of stool samples from 24 human subjects and by fungal growth experiments in bacterial spent media. Furthermore, our pairwise simulations guided us to specific metabolites with promoting or inhibitory effect to the fungus when exposed in defined media under carbon and nitrogen limitation. Our study demonstrates that in silico metabolic prediction can lead to the identification of gut microbiome features that can significantly affect potentially harmful levels of C. albicans. |
format | Online Article Text |
id | pubmed-8115155 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-81151552021-05-12 Metabolic modeling predicts specific gut bacteria as key determinants for Candida albicans colonization levels Mirhakkak, Mohammad H. Schäuble, Sascha Klassert, Tilman E. Brunke, Sascha Brandt, Philipp Loos, Daniel Uribe, Ruben V. Senne de Oliveira Lino, Felipe Ni, Yueqiong Vylkova, Slavena Slevogt, Hortense Hube, Bernhard Weiss, Glen J. Sommer, Morten O. A. Panagiotou, Gianni ISME J Article Candida albicans is a leading cause of life-threatening hospital-acquired infections and can lead to Candidemia with sepsis-like symptoms and high mortality rates. We reconstructed a genome-scale C. albicans metabolic model to investigate bacterial-fungal metabolic interactions in the gut as determinants of fungal abundance. We optimized the predictive capacity of our model using wild type and mutant C. albicans growth data and used it for in silico metabolic interaction predictions. Our analysis of more than 900 paired fungal–bacterial metabolic models predicted key gut bacterial species modulating C. albicans colonization levels. Among the studied microbes, Alistipes putredinis was predicted to negatively affect C. albicans levels. We confirmed these findings by metagenomic sequencing of stool samples from 24 human subjects and by fungal growth experiments in bacterial spent media. Furthermore, our pairwise simulations guided us to specific metabolites with promoting or inhibitory effect to the fungus when exposed in defined media under carbon and nitrogen limitation. Our study demonstrates that in silico metabolic prediction can lead to the identification of gut microbiome features that can significantly affect potentially harmful levels of C. albicans. Nature Publishing Group UK 2020-12-15 2021-05 /pmc/articles/PMC8115155/ /pubmed/33323978 http://dx.doi.org/10.1038/s41396-020-00848-z Text en © The Author(s) 2020 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Mirhakkak, Mohammad H. Schäuble, Sascha Klassert, Tilman E. Brunke, Sascha Brandt, Philipp Loos, Daniel Uribe, Ruben V. Senne de Oliveira Lino, Felipe Ni, Yueqiong Vylkova, Slavena Slevogt, Hortense Hube, Bernhard Weiss, Glen J. Sommer, Morten O. A. Panagiotou, Gianni Metabolic modeling predicts specific gut bacteria as key determinants for Candida albicans colonization levels |
title | Metabolic modeling predicts specific gut bacteria as key determinants for Candida albicans colonization levels |
title_full | Metabolic modeling predicts specific gut bacteria as key determinants for Candida albicans colonization levels |
title_fullStr | Metabolic modeling predicts specific gut bacteria as key determinants for Candida albicans colonization levels |
title_full_unstemmed | Metabolic modeling predicts specific gut bacteria as key determinants for Candida albicans colonization levels |
title_short | Metabolic modeling predicts specific gut bacteria as key determinants for Candida albicans colonization levels |
title_sort | metabolic modeling predicts specific gut bacteria as key determinants for candida albicans colonization levels |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115155/ https://www.ncbi.nlm.nih.gov/pubmed/33323978 http://dx.doi.org/10.1038/s41396-020-00848-z |
work_keys_str_mv | AT mirhakkakmohammadh metabolicmodelingpredictsspecificgutbacteriaaskeydeterminantsforcandidaalbicanscolonizationlevels AT schaublesascha metabolicmodelingpredictsspecificgutbacteriaaskeydeterminantsforcandidaalbicanscolonizationlevels AT klasserttilmane metabolicmodelingpredictsspecificgutbacteriaaskeydeterminantsforcandidaalbicanscolonizationlevels AT brunkesascha metabolicmodelingpredictsspecificgutbacteriaaskeydeterminantsforcandidaalbicanscolonizationlevels AT brandtphilipp metabolicmodelingpredictsspecificgutbacteriaaskeydeterminantsforcandidaalbicanscolonizationlevels AT loosdaniel metabolicmodelingpredictsspecificgutbacteriaaskeydeterminantsforcandidaalbicanscolonizationlevels AT uriberubenv metabolicmodelingpredictsspecificgutbacteriaaskeydeterminantsforcandidaalbicanscolonizationlevels AT sennedeoliveiralinofelipe metabolicmodelingpredictsspecificgutbacteriaaskeydeterminantsforcandidaalbicanscolonizationlevels AT niyueqiong metabolicmodelingpredictsspecificgutbacteriaaskeydeterminantsforcandidaalbicanscolonizationlevels AT vylkovaslavena metabolicmodelingpredictsspecificgutbacteriaaskeydeterminantsforcandidaalbicanscolonizationlevels AT slevogthortense metabolicmodelingpredictsspecificgutbacteriaaskeydeterminantsforcandidaalbicanscolonizationlevels AT hubebernhard metabolicmodelingpredictsspecificgutbacteriaaskeydeterminantsforcandidaalbicanscolonizationlevels AT weissglenj metabolicmodelingpredictsspecificgutbacteriaaskeydeterminantsforcandidaalbicanscolonizationlevels AT sommermortenoa metabolicmodelingpredictsspecificgutbacteriaaskeydeterminantsforcandidaalbicanscolonizationlevels AT panagiotougianni metabolicmodelingpredictsspecificgutbacteriaaskeydeterminantsforcandidaalbicanscolonizationlevels |