Cargando…
An artificial intelligence system for predicting the deterioration of COVID-19 patients in the emergency department
During the coronavirus disease 2019 (COVID-19) pandemic, rapid and accurate triage of patients at the emergency department is critical to inform decision-making. We propose a data-driven approach for automatic prediction of deterioration risk using a deep neural network that learns from chest X-ray...
Autores principales: | Shamout, Farah E., Shen, Yiqiu, Wu, Nan, Kaku, Aakash, Park, Jungkyu, Makino, Taro, Jastrzębski, Stanisław, Witowski, Jan, Wang, Duo, Zhang, Ben, Dogra, Siddhant, Cao, Meng, Razavian, Narges, Kudlowitz, David, Azour, Lea, Moore, William, Lui, Yvonne W., Aphinyanaphongs, Yindalon, Fernandez-Granda, Carlos, Geras, Krzysztof J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115328/ https://www.ncbi.nlm.nih.gov/pubmed/33980980 http://dx.doi.org/10.1038/s41746-021-00453-0 |
Ejemplares similares
-
A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients
por: Razavian, Narges, et al.
Publicado: (2020) -
Evaluating the Effect of a COVID-19 Predictive Model to Facilitate Discharge: A Randomized Controlled Trial
por: Major, Vincent J., et al.
Publicado: (2022) -
Predicting childhood obesity using electronic health records and publicly available data
por: Hammond, Robert, et al.
Publicado: (2019) -
Correction: Predicting childhood obesity using electronic health records and publicly available data
por: Hammond, Robert, et al.
Publicado: (2019) -
Development, implementation, and prospective validation of a model to predict 60-day end-of-life in hospitalized adults upon admission at three sites
por: Major, Vincent J., et al.
Publicado: (2020)