Cargando…
Helicobacter pylori PqqE is a new virulence factor that cleaves junctional adhesion molecule A and disrupts gastric epithelial integrity
Helicobacter pylori infects approximately half of the world’s population and is the strongest risk factor for peptic ulcer disease and gastric cancer, representing a major global health concern. H. pylori persistently colonizes the gastric epithelium, where it subverts the highly organized structure...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115454/ https://www.ncbi.nlm.nih.gov/pubmed/33970782 http://dx.doi.org/10.1080/19490976.2021.1921928 |
Sumario: | Helicobacter pylori infects approximately half of the world’s population and is the strongest risk factor for peptic ulcer disease and gastric cancer, representing a major global health concern. H. pylori persistently colonizes the gastric epithelium, where it subverts the highly organized structures that maintain epithelial integrity. Here, a unique strategy used by H. pylori to disrupt the gastric epithelial junctional adhesion molecule-A (JAM-A) is disclosed, using various experimental models that include gastric cell lines, primary human gastric cells, and biopsy specimens of infected and non-infected individuals. H. pylori preferentially cleaves the cytoplasmic domain of JAM-A at Alanine 285. Cells stably transfected with full-length JAM-A or JAM-A lacking the cleaved sequence are used in a range of functional assays, which demonstrate that the H. pylori cleaved region is critical to the maintenance of the epithelial barrier and of cell-cell adhesion. Notably, by combining chromatography techniques and mass spectrometry, PqqE (HP1012) is purified and identified as the H. pylori virulence factor that cleaves JAM-A, uncovering a previously unreported function for this bacterial protease. These findings propose a novel mechanism for H. pylori to disrupt epithelial integrity and functions, breaking new ground in the understanding of the pathogenesis of this highly prevalent and clinically relevant infection. |
---|