Cargando…

Genetic analysis of ALS cases in the isolated island population of Malta

Genetic isolates are compelling tools for mapping genes of inherited disorders. The archipelago of Malta, a sovereign microstate in the south of Europe is home to a geographically and culturally isolated population. Here, we investigate the epidemiology and genetic profile of Maltese patients with a...

Descripción completa

Detalles Bibliográficos
Autores principales: Borg, Rebecca, Farrugia Wismayer, Maia, Bonavia, Karl, Farrugia Wismayer, Andrew, Vella, Malcolm, van Vugt, Joke J. F. A., Kenna, Brendan J., Kenna, Kevin P., Vassallo, Neville, Veldink, Jan H., Cauchi, Ruben J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115635/
https://www.ncbi.nlm.nih.gov/pubmed/33414559
http://dx.doi.org/10.1038/s41431-020-00767-9
Descripción
Sumario:Genetic isolates are compelling tools for mapping genes of inherited disorders. The archipelago of Malta, a sovereign microstate in the south of Europe is home to a geographically and culturally isolated population. Here, we investigate the epidemiology and genetic profile of Maltese patients with amyotrophic lateral sclerosis (ALS), identified throughout a 2-year window. Cases were largely male (66.7%) with a predominant spinal onset of symptoms (70.8%). Disease onset occurred around mid-age (median age: 64 years, men; 59.5 years, female); 12.5% had familial ALS (fALS). Annual incidence rate was 2.48 (95% CI 1.59–3.68) per 100,000 person-years. Male-to-female incidence ratio was 1.93:1. Prevalence was 3.44 (95% CI 2.01–5.52) cases per 100,000 inhabitants on 31(st) December 2018. Whole-genome sequencing allowed us to determine rare DNA variants that change the protein-coding sequence of ALS-associated genes. Interestingly, the Maltese ALS patient cohort was found to be negative for deleterious variants in C9orf72, SOD1, TARDBP or FUS genes, which are the most commonly mutated ALS genes globally. Nonetheless, ALS-associated repeat expansions were identified in ATXN2 and NIPA1. Variants predicted to be damaging were also detected in ALS2, DAO, DCTN1, ERBB4, SETX, SCFD1 and SPG11. A total of 40% of patients with sporadic ALS had a rare and deleterious variant or repeat expansion in an ALS-associated gene, whilst the genetic cause of two thirds of fALS cases could not be pinpointed to known ALS genes or risk loci. This warrants further studies to elucidate novel genes that cause ALS in this unique population isolate.