Cargando…
Engineering new limits to magnetostriction through metastability in iron-gallium alloys
Magnetostrictive materials transduce magnetic and mechanical energies and when combined with piezoelectric elements, evoke magnetoelectric transduction for high-sensitivity magnetic field sensors and energy-efficient beyond-CMOS technologies. The dearth of ductile, rare-earth-free materials with hig...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115637/ https://www.ncbi.nlm.nih.gov/pubmed/33980848 http://dx.doi.org/10.1038/s41467-021-22793-x |
_version_ | 1783691234472099840 |
---|---|
author | Meisenheimer, P. B. Steinhardt, R. A. Sung, S. H. Williams, L. D. Zhuang, S. Nowakowski, M. E. Novakov, S. Torunbalci, M. M. Prasad, B. Zollner, C. J. Wang, Z. Dawley, N. M. Schubert, J. Hunter, A. H. Manipatruni, S. Nikonov, D. E. Young, I. A. Chen, L. Q. Bokor, J. Bhave, S. A. Ramesh, R. Hu, J.-M. Kioupakis, E. Hovden, R. Schlom, D. G. Heron, J. T. |
author_facet | Meisenheimer, P. B. Steinhardt, R. A. Sung, S. H. Williams, L. D. Zhuang, S. Nowakowski, M. E. Novakov, S. Torunbalci, M. M. Prasad, B. Zollner, C. J. Wang, Z. Dawley, N. M. Schubert, J. Hunter, A. H. Manipatruni, S. Nikonov, D. E. Young, I. A. Chen, L. Q. Bokor, J. Bhave, S. A. Ramesh, R. Hu, J.-M. Kioupakis, E. Hovden, R. Schlom, D. G. Heron, J. T. |
author_sort | Meisenheimer, P. B. |
collection | PubMed |
description | Magnetostrictive materials transduce magnetic and mechanical energies and when combined with piezoelectric elements, evoke magnetoelectric transduction for high-sensitivity magnetic field sensors and energy-efficient beyond-CMOS technologies. The dearth of ductile, rare-earth-free materials with high magnetostrictive coefficients motivates the discovery of superior materials. Fe(1−x)Ga(x) alloys are amongst the highest performing rare-earth-free magnetostrictive materials; however, magnetostriction becomes sharply suppressed beyond x = 19% due to the formation of a parasitic ordered intermetallic phase. Here, we harness epitaxy to extend the stability of the BCC Fe(1−x)Ga(x) alloy to gallium compositions as high as x = 30% and in so doing dramatically boost the magnetostriction by as much as 10x relative to the bulk and 2x larger than canonical rare-earth based magnetostrictors. A Fe(1−x)Ga(x) − [Pb(Mg(1/3)Nb(2/3))O(3)](0.7)−[PbTiO(3)](0.3) (PMN-PT) composite magnetoelectric shows robust 90° electrical switching of magnetic anisotropy and a converse magnetoelectric coefficient of 2.0 × 10(−5) s m(−1). When optimally scaled, this high coefficient implies stable switching at ~80 aJ per bit. |
format | Online Article Text |
id | pubmed-8115637 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-81156372021-05-14 Engineering new limits to magnetostriction through metastability in iron-gallium alloys Meisenheimer, P. B. Steinhardt, R. A. Sung, S. H. Williams, L. D. Zhuang, S. Nowakowski, M. E. Novakov, S. Torunbalci, M. M. Prasad, B. Zollner, C. J. Wang, Z. Dawley, N. M. Schubert, J. Hunter, A. H. Manipatruni, S. Nikonov, D. E. Young, I. A. Chen, L. Q. Bokor, J. Bhave, S. A. Ramesh, R. Hu, J.-M. Kioupakis, E. Hovden, R. Schlom, D. G. Heron, J. T. Nat Commun Article Magnetostrictive materials transduce magnetic and mechanical energies and when combined with piezoelectric elements, evoke magnetoelectric transduction for high-sensitivity magnetic field sensors and energy-efficient beyond-CMOS technologies. The dearth of ductile, rare-earth-free materials with high magnetostrictive coefficients motivates the discovery of superior materials. Fe(1−x)Ga(x) alloys are amongst the highest performing rare-earth-free magnetostrictive materials; however, magnetostriction becomes sharply suppressed beyond x = 19% due to the formation of a parasitic ordered intermetallic phase. Here, we harness epitaxy to extend the stability of the BCC Fe(1−x)Ga(x) alloy to gallium compositions as high as x = 30% and in so doing dramatically boost the magnetostriction by as much as 10x relative to the bulk and 2x larger than canonical rare-earth based magnetostrictors. A Fe(1−x)Ga(x) − [Pb(Mg(1/3)Nb(2/3))O(3)](0.7)−[PbTiO(3)](0.3) (PMN-PT) composite magnetoelectric shows robust 90° electrical switching of magnetic anisotropy and a converse magnetoelectric coefficient of 2.0 × 10(−5) s m(−1). When optimally scaled, this high coefficient implies stable switching at ~80 aJ per bit. Nature Publishing Group UK 2021-05-12 /pmc/articles/PMC8115637/ /pubmed/33980848 http://dx.doi.org/10.1038/s41467-021-22793-x Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Meisenheimer, P. B. Steinhardt, R. A. Sung, S. H. Williams, L. D. Zhuang, S. Nowakowski, M. E. Novakov, S. Torunbalci, M. M. Prasad, B. Zollner, C. J. Wang, Z. Dawley, N. M. Schubert, J. Hunter, A. H. Manipatruni, S. Nikonov, D. E. Young, I. A. Chen, L. Q. Bokor, J. Bhave, S. A. Ramesh, R. Hu, J.-M. Kioupakis, E. Hovden, R. Schlom, D. G. Heron, J. T. Engineering new limits to magnetostriction through metastability in iron-gallium alloys |
title | Engineering new limits to magnetostriction through metastability in iron-gallium alloys |
title_full | Engineering new limits to magnetostriction through metastability in iron-gallium alloys |
title_fullStr | Engineering new limits to magnetostriction through metastability in iron-gallium alloys |
title_full_unstemmed | Engineering new limits to magnetostriction through metastability in iron-gallium alloys |
title_short | Engineering new limits to magnetostriction through metastability in iron-gallium alloys |
title_sort | engineering new limits to magnetostriction through metastability in iron-gallium alloys |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115637/ https://www.ncbi.nlm.nih.gov/pubmed/33980848 http://dx.doi.org/10.1038/s41467-021-22793-x |
work_keys_str_mv | AT meisenheimerpb engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT steinhardtra engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT sungsh engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT williamsld engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT zhuangs engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT nowakowskime engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT novakovs engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT torunbalcimm engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT prasadb engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT zollnercj engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT wangz engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT dawleynm engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT schubertj engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT hunterah engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT manipatrunis engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT nikonovde engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT youngia engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT chenlq engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT bokorj engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT bhavesa engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT rameshr engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT hujm engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT kioupakise engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT hovdenr engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT schlomdg engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys AT heronjt engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys |