Cargando…

Engineering new limits to magnetostriction through metastability in iron-gallium alloys

Magnetostrictive materials transduce magnetic and mechanical energies and when combined with piezoelectric elements, evoke magnetoelectric transduction for high-sensitivity magnetic field sensors and energy-efficient beyond-CMOS technologies. The dearth of ductile, rare-earth-free materials with hig...

Descripción completa

Detalles Bibliográficos
Autores principales: Meisenheimer, P. B., Steinhardt, R. A., Sung, S. H., Williams, L. D., Zhuang, S., Nowakowski, M. E., Novakov, S., Torunbalci, M. M., Prasad, B., Zollner, C. J., Wang, Z., Dawley, N. M., Schubert, J., Hunter, A. H., Manipatruni, S., Nikonov, D. E., Young, I. A., Chen, L. Q., Bokor, J., Bhave, S. A., Ramesh, R., Hu, J.-M., Kioupakis, E., Hovden, R., Schlom, D. G., Heron, J. T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115637/
https://www.ncbi.nlm.nih.gov/pubmed/33980848
http://dx.doi.org/10.1038/s41467-021-22793-x
_version_ 1783691234472099840
author Meisenheimer, P. B.
Steinhardt, R. A.
Sung, S. H.
Williams, L. D.
Zhuang, S.
Nowakowski, M. E.
Novakov, S.
Torunbalci, M. M.
Prasad, B.
Zollner, C. J.
Wang, Z.
Dawley, N. M.
Schubert, J.
Hunter, A. H.
Manipatruni, S.
Nikonov, D. E.
Young, I. A.
Chen, L. Q.
Bokor, J.
Bhave, S. A.
Ramesh, R.
Hu, J.-M.
Kioupakis, E.
Hovden, R.
Schlom, D. G.
Heron, J. T.
author_facet Meisenheimer, P. B.
Steinhardt, R. A.
Sung, S. H.
Williams, L. D.
Zhuang, S.
Nowakowski, M. E.
Novakov, S.
Torunbalci, M. M.
Prasad, B.
Zollner, C. J.
Wang, Z.
Dawley, N. M.
Schubert, J.
Hunter, A. H.
Manipatruni, S.
Nikonov, D. E.
Young, I. A.
Chen, L. Q.
Bokor, J.
Bhave, S. A.
Ramesh, R.
Hu, J.-M.
Kioupakis, E.
Hovden, R.
Schlom, D. G.
Heron, J. T.
author_sort Meisenheimer, P. B.
collection PubMed
description Magnetostrictive materials transduce magnetic and mechanical energies and when combined with piezoelectric elements, evoke magnetoelectric transduction for high-sensitivity magnetic field sensors and energy-efficient beyond-CMOS technologies. The dearth of ductile, rare-earth-free materials with high magnetostrictive coefficients motivates the discovery of superior materials. Fe(1−x)Ga(x) alloys are amongst the highest performing rare-earth-free magnetostrictive materials; however, magnetostriction becomes sharply suppressed beyond x = 19% due to the formation of a parasitic ordered intermetallic phase. Here, we harness epitaxy to extend the stability of the BCC Fe(1−x)Ga(x) alloy to gallium compositions as high as x = 30% and in so doing dramatically boost the magnetostriction by as much as 10x relative to the bulk and 2x larger than canonical rare-earth based magnetostrictors. A Fe(1−x)Ga(x) − [Pb(Mg(1/3)Nb(2/3))O(3)](0.7)−[PbTiO(3)](0.3) (PMN-PT) composite magnetoelectric shows robust 90° electrical switching of magnetic anisotropy and a converse magnetoelectric coefficient of 2.0 × 10(−5) s m(−1). When optimally scaled, this high coefficient implies stable switching at ~80 aJ per bit.
format Online
Article
Text
id pubmed-8115637
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-81156372021-05-14 Engineering new limits to magnetostriction through metastability in iron-gallium alloys Meisenheimer, P. B. Steinhardt, R. A. Sung, S. H. Williams, L. D. Zhuang, S. Nowakowski, M. E. Novakov, S. Torunbalci, M. M. Prasad, B. Zollner, C. J. Wang, Z. Dawley, N. M. Schubert, J. Hunter, A. H. Manipatruni, S. Nikonov, D. E. Young, I. A. Chen, L. Q. Bokor, J. Bhave, S. A. Ramesh, R. Hu, J.-M. Kioupakis, E. Hovden, R. Schlom, D. G. Heron, J. T. Nat Commun Article Magnetostrictive materials transduce magnetic and mechanical energies and when combined with piezoelectric elements, evoke magnetoelectric transduction for high-sensitivity magnetic field sensors and energy-efficient beyond-CMOS technologies. The dearth of ductile, rare-earth-free materials with high magnetostrictive coefficients motivates the discovery of superior materials. Fe(1−x)Ga(x) alloys are amongst the highest performing rare-earth-free magnetostrictive materials; however, magnetostriction becomes sharply suppressed beyond x = 19% due to the formation of a parasitic ordered intermetallic phase. Here, we harness epitaxy to extend the stability of the BCC Fe(1−x)Ga(x) alloy to gallium compositions as high as x = 30% and in so doing dramatically boost the magnetostriction by as much as 10x relative to the bulk and 2x larger than canonical rare-earth based magnetostrictors. A Fe(1−x)Ga(x) − [Pb(Mg(1/3)Nb(2/3))O(3)](0.7)−[PbTiO(3)](0.3) (PMN-PT) composite magnetoelectric shows robust 90° electrical switching of magnetic anisotropy and a converse magnetoelectric coefficient of 2.0 × 10(−5) s m(−1). When optimally scaled, this high coefficient implies stable switching at ~80 aJ per bit. Nature Publishing Group UK 2021-05-12 /pmc/articles/PMC8115637/ /pubmed/33980848 http://dx.doi.org/10.1038/s41467-021-22793-x Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Meisenheimer, P. B.
Steinhardt, R. A.
Sung, S. H.
Williams, L. D.
Zhuang, S.
Nowakowski, M. E.
Novakov, S.
Torunbalci, M. M.
Prasad, B.
Zollner, C. J.
Wang, Z.
Dawley, N. M.
Schubert, J.
Hunter, A. H.
Manipatruni, S.
Nikonov, D. E.
Young, I. A.
Chen, L. Q.
Bokor, J.
Bhave, S. A.
Ramesh, R.
Hu, J.-M.
Kioupakis, E.
Hovden, R.
Schlom, D. G.
Heron, J. T.
Engineering new limits to magnetostriction through metastability in iron-gallium alloys
title Engineering new limits to magnetostriction through metastability in iron-gallium alloys
title_full Engineering new limits to magnetostriction through metastability in iron-gallium alloys
title_fullStr Engineering new limits to magnetostriction through metastability in iron-gallium alloys
title_full_unstemmed Engineering new limits to magnetostriction through metastability in iron-gallium alloys
title_short Engineering new limits to magnetostriction through metastability in iron-gallium alloys
title_sort engineering new limits to magnetostriction through metastability in iron-gallium alloys
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115637/
https://www.ncbi.nlm.nih.gov/pubmed/33980848
http://dx.doi.org/10.1038/s41467-021-22793-x
work_keys_str_mv AT meisenheimerpb engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT steinhardtra engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT sungsh engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT williamsld engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT zhuangs engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT nowakowskime engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT novakovs engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT torunbalcimm engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT prasadb engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT zollnercj engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT wangz engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT dawleynm engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT schubertj engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT hunterah engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT manipatrunis engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT nikonovde engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT youngia engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT chenlq engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT bokorj engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT bhavesa engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT rameshr engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT hujm engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT kioupakise engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT hovdenr engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT schlomdg engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys
AT heronjt engineeringnewlimitstomagnetostrictionthroughmetastabilityinirongalliumalloys